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Chapter 1

Introduction

In most marine propeller applications cavitation usually occurs first in the strong
vortical region in the vicinity of the blade tip. Inception at the tip may occur either
on the blade or in the vortex core (downstream of the blade). Knowing the details of
the flow on and/or behind the tip is thus crucial in determining cavitation inception.
Tip vortex cavitation has been one of the loudest underwater noise sources. Due to
this, tip vortex cavitation has been of great interest in naval propeller design. A tip
vortex is most likely to cavitate when the blade tip is subject to off-design conditions,
due to spatial non-uniformity of the inflow to the propeller, or due to flow inclination.
In order to delay tip vortex cavitation inception, designers often unload the circulation
distribution at the tip, thus by sacrificing on propeller efficiency. Therefore, in the
design and assessment of propulsors for naval applications, it is essential to accurately

predict and thus control tip vortex cavitation inception.

1.1 Objectives

The objective of this thesis is to develop a robust and efficient panel method applicable
to general shape lifting surfaces, including propeller blades, with full wake alignment
and wake sheet roll-up in three dimensions. The approach is to use a new panel
arrangement on the propeller blades to obtain accurate prediction of the pressure

distribution at the blade tip. In addition, a higher order panel method and a redis-

18




cretization scheme in the calculation of wake sheet roll-up are used to obtain more
accurate and smoothly rolled-up geometry of the wake sheet. Emphasis is placed on
obtaining accurate prediction of the tip vortex trajectory, the geometry of the wake
sheet, and the pressure distribution at the tip. It is expected that such a solution will

improve the prediction of tip vortex cavitation inception.

1.2 Previous Research

1.2.1 Tip Vortex Cavitation

The primary methods for predicting tip vortex cavitation inception are variations
of the method by McCormick [51],[50]. He proposes a semi-empirical approach in
which he considers that the minimum pressure depends on the near-tip loading and
identifies the important role of the foil tip boundary layer. He then postulates a
power law relation, § ~ Re™", between the boundary layer thickness ¢ and the local
Reynold’s number Re. The constant factor multiplying this scaling law as well as the
exponent are geometry dependent and thus the method can provide predictions only
for geometries which are close to those that have been tested in either model or full
scale. More recently, from LDV measurements in the vicinity of the tip vortex for
several planar wing configurations, at different tunnel facilities and flow conditions,
Fruman et al. [15] have shown that the velocity field close to the core of the vortex
depends on two parameters; (1) the strength of the tip vortex along its trajectory
and (2) the radius of the vortex core. Having these parameters, the value of the
minimum pressure inside the vortex core and its location along the vortex can be
readily determined. The corresponding pressure coefficient should then be equal to
the negative value of the cavitation number at inception. Recent attempts by Dupont
and Cerrutti [9] to apply Reynolds Averaged Navier-Stokes solvers to the tip vortex
flow have led to poor predictions of the minimum pressure in the vortex core, mainly
due to gross overprediction of the size of the vortex viscous core . On the other hand,

panel methods have been found to be useful in determining the minimum pressure
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coefficient at the blade tip, which then can be correlated with the cavitation number
at tip vortex cavitation inception. It is believed that a robust panel method, with
full wake alignment , will not only improve the accuracy of the predicted pressure
distributions at the blade tip, but also will provide the foundation for predicting the
tip vortex evolution which will ultimately lead to more reliable estimates of tip vortex

cavitation inception.

1.2.2 The Panel Method

Panel or Boundary Element methods(BEM) have been applied for the analysis of
propeller flows. This method is well advanced and has been extensively described by
Hess and Valarezo [20], Lee [42], Kerwin et al. [33] and Hoshino [23]. These methods
employed a potential or a velocity based formulation. The investigation of different
panel methods by Lee [42] showed that the perturbation potential based panel method
is the best for propeller applications.

A perturbation potential based Boundary Element Method, including the presence
of the hub and duct, was developed at MIT by Kerwin et al. [33] and Lee [42].
This method was a low-order BEM based on Green’s formula with respect to the
perturbation potential. The method discretized the propeller surface and wake with
planar quadrilateral panels and constant strength sources and dipoles were distributed
on the panels. The panel method has been applied successfully for the hydrodynamic
analysis of marine propellers (Lee [42]). In most application, the BEM has been found
to predict spanwise circulation distributions which are consistent to those predicted
from Vortex Lattice Method(VLM) (Hsin [24]). This means that the circulation
distributions predicted by BEM for lifting surfaces with thickness, smoothly (often
linearly with thickness) extrapolate to the circulation distribution predicted by VLM
for the same lifting surface with zero thickness. When this method is applied to a
wide circular tip propeller, inaccurate solutions are obtained and an iterative pressure
Kutta condition(Kerwin et al. [33]) has been found to diverge. Most importantly,
the prediction of the pressure distribution in the tip region has been found to be

inaccurate. The correct prediction of the pressure distribution is important not only
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for the thrust and torque calculations by integration of the pressure distribution on
the blade surface, but also for the cavitation inception estimation. A grid oriented
along constant radii, namely the conventional grid, has previously been employed
by the BEM. This grid arrangement results in high aspect ratio of the panels at
the propeller tip. A blade orthogonal grid (BOG), which is orthogonal both at the
leading edge and the trailing edge, was developed by Hsin et al. [25] in order to
improve the resolution and to reduce panel distortion and aspect ratio near the tip.
The blade orthogonal grid was found to improve the convergence of the computed
pressure distribution at the tip, and consequently also the convergence of the iterative
pressure Kutta condition (Hsin et al. [25]). Nevertheless, when the blade orthogonal
grid was applied to lifting surfaces and propellers with wide circular tips, it was found
that the circulation distribution behaves non-physically at the tip. To avoid this non-
physical behavior of the method at the tip, the FLow Adapted Grid was introduced
by Kinnas et al. [36], which is orthogonal at the leading edge and aligned with the
resulting mean flow at the trailing edge. Pyo and Kinnas [64] showed that this grid
improved the convergence of IPK condition and the behavior at the tip of propeller
blades.

The Kutta condition may be enforced numerically via the Morino condition [59].
This condition requires that the dipole strength at the trailing edge in the wake to
be equal to the difference of the potentials at the trailing edge panels on the blade.
Lee [42] incorporated a correction to the Morino condition in two dimensions by
applying the Kutta condition at the exact location of the trailing edge. Application
of the Morino condition in three dimensions does not always guarantee equality of
the resulting pressures at the trailing edge. An iterative pressure Kutta condition
based on Newton-Rapson method was introduced by Kerwin et. al [33] and extended
to unsteady propeller flows by Hsin [24], and Kinnas and Hsin [35].

The geometry of the trailing wake behind propeller blades was first calculated by
Cummings [8], who determined the wake geometry by using a two-dimensional time
domain approach in which the body effect was not included. In the BEM, the geom-

etry of the trailing wake sheet is calculated via the lifting surface method of Greeley
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and Kerwin [16] in an indirect way, where the geometry was determined from the
requirement that the trailing vorticity at the trailing edge and far downstream should
be aligned with the local flow. Since the local flow depended on the trailing wake
geometry in a nonlinear way, an iterative procedure was employed. In the method
of Greeley and Kerwin [16] the effects of coupling between the thickness and load-
ing and the wake sheet roll-up were ignored. In addition the radial contraction and
the ultimate radius of the trailing wake were assumed to be given from experiments.
In summary, this method only included axial and circumferential velocities at the
trailing edge and the ultimate wake, and thus suppressed the effect of wake sheet

roll-up.

1.2.3 Vortex Sheet Roll-Up

In the past there have been a large number of attempts to model the vortex sheet
motion by replacing the continuous vortex sheet with a finite number of discrete vor-
tices or alternatively, by replacing the dipole sheet with segments carrying a piecewise
constant dipole distribution.

Rosenhead [66] was the first to attempt this approach with an analysis of the
nonlinear Kelvin-Helmholtz instability in a two-dimensional vortex sheet of constant
strength. Westwater [74] first applied the discrete vortex method to the problem of
vortex sheet roll-up behind an elliptically loaded wing. Attempts to improve West-
water’s results by increasing the number of vortices representing the vortex sheet
have not been successful. It appeared that this approach inevitably led to chaotic
motion in the region of the tip vortex, which resulted in loss of the identity of the
vortex sheet. Different approaches have been attempted to desingularize the solution.
Chorin and Bernard [7] and Kuwahara and Takami [40] introduced a finite core model
for the vortices, in which the velocity remains finite. Moore [56] used a process of
amalgamation in which the vortices are combined when they approach each other too
closely or when they have to represent high curvature regions in a spiraling sheet.
Maskew[46] employed the sub-vortex technique. Despite all these improvements, the

discrete vortex representation resulted inevitably in numerical instabilities when the
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number of vortices was increased or the core radius was decreased. In the case of
wing tip vortices, the method of rediscretization by Fink and Soh [14] has been more
successful in obtaining smooth vortex sheet behavior over long periods than have
been reported previously. However, recent investigations by Baker [4] on the stability
of the rediscretization method for the case of double-branched spiraling vortex sheets
demonstrated that this method eventually ended in chaos as well. As an alterna-
tive approach, Baker [3] suggested cloud-in-cell method. In this method, the velocity
field due to the discrete vortices was computed by solving Poisson’s equation for the
stream function due to a grid-dependent region of distributed vorticity in the two di-
mensional plane. The main disadvantages of this method are that the method and its
fine-scale behavior are sensitive to the size of mesh , the surface boundary conditions,
the number of vortices and the time-step, as noted by Murman and Stremel [60].
From those attempts, it appeared that the discrete vortex method was not adequate
to compute smooth vortex sheet roll-up reliably.

On the other hand, the use of dipole distributions for two and three dimensional
attached flows is well advanced and has been extensively described in the past by Hess
[19] and Johnson [28]. In its most general form, the body is represented by sources and
dipoles and the kinematic boundary condition is applied on the body. Across the wake
sheet the normal velocity is continuous but the tangential velocity is discontinuous
by a “jump” corresponding to the strength of the vorticity sheet. Thus, the wake
sheet can also be expressed via a distribution of dipoles. A complete description of
this method was presented by Maskew [47]. Hoeijmakers et al. [22] developed high
order panel methods based on the slender body approximation. In general, the panel
methods produce smoother vortex sheets than those of the discrete vortex models of
Maskew and Rao [48] and Fink and Soh [13]. A number of fully three dimensional flow
models have been developed for the prediction of wake roll-up in order to overcome
the limitations of the slender body approximation. The most well known methods
among the high order panel methods are the Boeing’s LEV-Model by Johnson et al.
[29] and the VORSEP-Model by Hoeijmakers [22]. The comparison with experiments

has been good to encouraging as far as the overall accuracy of the position of the
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vortices is concerned. The local accuracy depended on the shape of the wing, angle of
attack, number of panels and the type of smoothing applied. The calculated pressure
distributions on the body compared reasonably well with those measured by Hummel
and Redeker[26]. The only disadvantage of these methods is that an initial geometry
of the vortex sheet had to be assumed or deduced from analytical solutions.

Recently, Reynolds-averaged Navier-Stokes (RANS) methods have been developed
with an assumption that the flow at an infinitesimally small distance upstream is con-
ically similar, which might be a valid approximation for viscous flows that vary slowly
in the streamwise direction. Lee [43] applied this method to predict the roll-up of the
leading edge vortex on delta wings. Eca et al. [11] solved the parabolized Navier-
Stokes equations on elliptic wings. Stern et al. [71] applied their RANS solver on
propeller blades. These methods have demonstrated capability to simulate qualita-
tively the physics of viscous dominated processes such as flows inside the core and
vortex breakdown. However, the current status of turbulence and transition mod-
eling is not yet adequate so that quantitative predictions(especially for the pressure
distribution inside the vortex core) based on RANS are feasible.

There are numerous other applications which do not fit conveniently into the
above categories. McCune and Tavares [53] solved the two-dimensional unsteady and
large amplitude delta wing motion problem with leading edge separation. McCracken
and Peskin [52] combined a finite-difference method with the vortex blob algorithm.
McAlister and Carr [49] solved unsteady vortical flows with dynamic stall around an

oscillating wing.

1.2.4 The Present Method

In the present method, a potential based boundary element method is applied for
the analysis of propeller flows. The flow adapted grid (FLAG) is developed in order
to solve the convergence problem for the typical grid arrangements and to improve
the tip flow behavior. The geometry of the trailing wake is decided directly from
the panel method without any assumption and the vortex sheet roll-up is included in

the FLAG. In order to model the wake sheet roll-up in three dimensions, bi-quadratic
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strength dipole distributions and hyperboloidal panel geometry are used. Throughout
the numerical calculation, rediscretization is applied as a smoothing scheme.

The consistency and convergence of the results from the numerical method are
validated first, and then the method is applied to several planar wing and propeller
blade geometries and the numerical results are compared with existing experimental

data.
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Chapter 2

Boundary Element Method

2.1 Formulation

The fundamentals of the BEM are described by Kerwin and Kinnas [33], Lee [42],
and Hsin et al. [25] and only a brief description will be given in this section. The

method is based on the classical Green’s third identity (applied on the body surface
S B)Z
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where the Green’s function G is the unit strength source in three dimensions; ¢ is the

perturbation potential; Sy is the trailing wake surface as shown in Figure 2-1.

The BEM implementation involves:
o Constant strength dipole and source panels on the blade and in the wake.
e Hyperboloidal panel geometry (critical for highly twisted body geometries).

o An Iterative Pressure Kutta (IPK) condition which determines the appropriate

strength A¢ in the wake in order for the pressure jump across the trailing edge
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to be equal to zero at all spanwise locations.

Two panel arrangements have been used in the past: the conventional grid by
Kerwin and Kinnas [33] and Lee [42] and the blade orthogonal grid (BOG) by Hsin

et al. [25].

Figure 2-1: Global coordinate system fixed on the propeller blade.

The former of the two grids and the proposed flow adapted grid (FLAG) will be

described in the next sections.

2.2 The conventional grid

The conventional grid has been used traditionally for vortex-lattice applications on
3-D wings and propeller blades by Lan [41] and Greeley and Kerwin [16]. It has

also been called the “constant radii” grid. The panel edges are located along the

27




intersections of the blade with cylinders concentric with the axis of propeller rotation.

The geometry of the trailing wake is found by following the Greeley and Kerwin [16]

procedure :
e The tip vortex trajectory starts on the blade at the highest radial position.

o The wake gridlines are aligned with the axial and tangential velocities in the

wake.
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Figure 2-2: The conventional grid on a propeller blade and its trailing wake.

e The radial contraction of the wake at the tip is an input parameter, given from

experimental information (usually equal to 30 degrees).

e The radius of the ultimate wake geometry is also an input parameter, given

from experimental information (usually equal to 0.83R).
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The corresponding panel arrangement for one of the three propeller blades (with
40 chordwise and 20 spanwise panels) is shown in Figure 2-2. The spanwise circulation
distribution predicted by applying the BEM on the described grid for propeller N4119
[27] is shown in Figure 2-3. In this particular case it took 14 iterations for the IPK

condition to converge (JAC,|rs < 1073).
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Figure 2-3: Circulation distribution on the propeller N4119; J = 0.833. Predicted by
applying the BEM on the conventional grid; before and after applying the Iterative
Pressure Kutta condition.

The circulation distribution “before” the IPK corresponds to the Morino [59]
Kutta condition in which the dipole strength in the wake is taken equal to the dif-
ference of the potentials at the panels at the two sides of the trailing edge. This

condition has been found to produce pressure distributions which do not match at
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the trailing edge, especially in the vicinity of the tip. The circulation distribution “af-
ter” the IPK corresponds to the modified wake dipole strength which ensures pressure
equality at the trailing edge. This panel arrangement has been successful for conven-
tional geometries. However, when this grid is applied to extreme geometries such as a

highly skewed propeller and a propeller with large tip chord, inaccurate and divergent

solutions are obtained.
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Figure 2-4: Circulation distribution on a circular wing planform hydrofoil; a = 5.73°,
Modified NACA66 thickness distribution with [7/c|mes = 0.2. Predicted by applying
the BEM on the conventional grid ; before and after applying the IPK condition.

This is because the conventional grid arrangement results in high panel aspect
ratios and highly skewed and twisted panels at the propeller tip. For a circular wing,

which has extremely large tip chord, the circulation distribution is show in Figure
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2-4. Notice the large difference over the span between the circulation distributions
before and after IPK condition. Especially near the tip the peculiar behavior of the
circulation distribution after IPK condition. In addition, for a propeller with large tip
chord , the pressure distributions at three spanwise locations and the mean velocity

vectors at the first control points in the wake along the trailing edge are shown in

Figures 2-5 and 2-6, respectively.
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Figure 2-5: Pressure coefficients predicted from BEM applied on the conventional
grid (after IPK condition); propeller N4119, J=0.833.

The velocity vectors are computed from the superposition of the inflow velocity,
U;,, and the velocities induced by all dipoles and sources on the blades and all dipoles

in the wakes of the blades. Notice the singular behavior of the pressures and the mean
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velocity vectors in the vicinity of the tip.

2.3 The blade orthogonal grid

To improve the resolution and to reduce panel distortion near the tip, the blade

orthogonal grid was introduced by Hsin et al. [25]. |

-I‘“\\§\§\

Figure 2-6: Mean velocity vectors along the trailing edge of the propeller N4119 ;
J = 0.833. Predicted by applying the BEM on the conventional grid.

In this grid, the expanded blade outline is assumed to be given as a cubic B-spline

curve. Then, the arclength along this outline is expressed as a function of parametric
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variable, which is zero at the intersection of the leading edge with the hub and reaches
to the maximum value at the intersection of the trailing edge with the hub. With the
tip point defined, the outline of the blade is divided. Finally, the divided points are
connected by cubic B-spline curves with four vertices, by putting the second and third
interior vertices along the normals to the edge. The orthogonality of the curves can
be obtained. Figure 2-7 shows a simple example of this grid for a circular planform
wing. One can see that the grid lines are orthogonal to the outline of the wing and

the panel aspect ratios remain small near the tip.

AN

ARLNANAN \\ \\ \
LU W W N
LN -

\ 1\
[T W W I W
] R O N A
‘ ] 1N I N N O O Y
I I A I Y I Y O Y Y Y Y
(1 I Y Y A
77777 7 7 7 7 [ 7 7 7
i YAV /
7L L / /

Figure 2-7: The blade orthogonal grid on a circular planform hydrofoil and its trailing
wake.

When the BEM was applied on this grid, it is found that the surface pressures at
the tips of non-lifting bodies were computed more accurately than when the BEM was
applied on the conventional grid. This is the consequence of concentrating more panels
at the tip as well as of producing much less distorted panels (of which the sides are of
comparable size and almost orthogonal to each other) than the conventional grid. The
blade orthogonal grid is also found to improve the convergence of the IPK condition

in the case of lifting hydrofoils or propeller blades. This is a direct consequence
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of the fact that the trailing edge pressures (which drive the IJPK condition) at the
tips were computed more accurately now than in the case of the conventional grid.
The circulation distributions for the circular planform wing are shown in Figure 2-8.
Notice that the difference between the circulation distributions before and after the

IPK condition is now larger than that for the conventional grid. An explanation for

this will be given in Appendix A.
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Figure 2-8: Circulation distribution on a circular planform hydrofoil; [7/c]mez = 0.2,
a = 5.73°. Predicted by applying the BEM on the blade orthogonal grid; before and

after applying the IPK condition.

Also notice that the circulation distribution after the IPK condition is very similar
(also “peculiar”) to that in the case of the conventional grid. The results shown in

this and the previous section indicate that there must be something fundamentally
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wrong either with the implementation of the IPK condition and/or with the utilized

grids.

2.4 The flow adapted grid (FLAG)

As explained in Appendix A, the difference in circulations between before and after
IPK condition will be decreased if the grid on the blade is aligned with the mean
velocity vector at the trailing edge. This means that if the grids on the blade and
in the wake are aligned with the mean velocity at the trailing edge, the number
of iteration for the IPK condition will be decreased and the solution will converge
after fewer iterations. From this examination, the new grid arrangement, namely
the “FLow Adapted Grid (FLAG)”, is developed. The flow adapted grid will be

introduced and applied on three dimensional wings and propellers in this section.

2.4.1 Construction of the grid

The flow adapted grid is constructed by satisfying the following characteristics:

e The grid on the blade is adapted to the resulting flow in the wake. This de-
creases the number of iterations for the IPK condition and the difference in the
circulation distributions between before and after IPK condition as explained

in Appendix A.

e The grid on the blade is smoothly connected to that in the wake at the trailing

edge.

e The grid on the blade is orthogonal at the leading edge. This results in im-

provement in resolution near the tip and more accurate pressure predictions at

the leading edge.

e The grid on the blade includes the effect of the resulting flow on the location of

the tip vortex detachment point (also called the “computational tip”).
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The procedure for implementing the flow adapted grid on propeller blades consists

of the following steps (also shown in the flow diagram of Figure 2-9).

START

READ INPUT
( BLADE GEOMETRY , WAKE PARAMETERS,
NUMBER OF BLADES )

{

RUN PANEL CODE
WITH CONVENTIONAL GRID

COMPUTE RADIAL INDUCED VEL.
AT T.E. & GET THE ANGLE 6

FIND THE POSITION OF THE TIP

CONSTRUCT FLAG

CONVERGE 7—

RUN PANEL CODE WITH FLAG

Figure 2-9: Flow diagram for construction of FLAG.

STEP 1

e Solve the boundary value problem by applying the panel method with the con-

ventional grid and straight wake for the wings and purely helicoidal wake for
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the propellers (no contraction). Determine the dipole and/or source strengths

on the blade, hub and wake panels.

e Compute the total mean velocity vectors, VI , ., at the first control points in

the wake at each radius, via the following superposition, also shown in Figure

2-10:

Figure 2-10: The contraction angle of the blade gridlines along the trailing edge.

Vigake =Vi+ Vo + V. + Uy (2.2)

where V', V,, V., are the tangential(circumferential), axial and radial velocities,

respectively; Uj, is the inflow velocity in the propeller fixed frame.
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The velocities V; and V', are computed by using a method similar to that of
Greeley and Kerwin [16], where a tip vortex with finite core is utilized. The core
radius and the radial contraction angle of the tip vortex at the blade are given
from experimental information. On the other hand, V. is computed by using
the superposition of the radial velocities induced by the blade, hub and wake

singularities resulting from applying the panel method on the conventional grid.

A, (m)

Figure 2-11: The geometry of grid lines. The tip vortex detachment point, Ay, is
taken downstream of the actual tip due to the contraction of the wake.
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STEP 2

e Calculate the contraction angle, 8, of the gridlines along the blade trailing edge

by using the following equation, as shown in Figure2-10.

V|

M
WAKE

) (2:3)

6 = sin‘l(’

with V& .z and V, computed in STEP 1.

e Find the location of the tip vortex detachment point (also called the “compu-
tational” tip), Aup, shown in Figure 2-11. At first, the tip is determined by
searching among the streamlines (corresponding to Vi 4z 5) for the one which
starts at the largest blade radial location and does not intersect the propeller
blade. Due to the contraction of the wake, the location of the computational
tip will be downstream from the actual tip. The details of the location of the

tip will be discussed in the following chapters.

e Construct the flow adapted grid on the blade. Having determined the location
of the tip vortex detachment point, A, the grid on the blade is determined,

by modifying the algorithm on which the blade orthogonal grid was based, as

follows:

First, the arclengths from the hub to the tip along the blade leading edge and
trailing edge are divided into M half-cosine intervals, with M being the number
of “spanwise” panels as shown in Figure 2-11. The corresponding arclengths

are given as

ale(m) = Atip cos ﬁm

Qte (m) - Amam - (Ama:c - Atip) COos ﬁm

for m=1,2,---,M
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where a;(m), ag(m) are arc length from the leading edge of the hub to Az(m)
and from the trailing edge of the hub to Ar(m), respectively, with 3, defined

as
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Figure 2-12: FLow Adapted Grid on N4990 propeller blade;N = 40, M = 20.J =
1.270.
In the case of the blade orthogonal grid, each Az(m) is connected with Ar(m)
via B-spline curves with four vertices which are normal to the blade outline.
In the present case, the grid lines are still normal to the blade outline at the

leading edge, but now they form an angle at the trailing edge, which is equal to

the corresponding wake contraction angle 6, defined earlier. The arcs of these
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grid lines are then divided into /2 full-cosine spaced intervals, with N being

the number of “chordwise” panels.
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Figure 2-13: Effect of wake geometry on circulation predicted by BEM for three
hydrofoils with elliptic chord distribution along the span; [7/c|me: = 0.2, @ = 5.73°,
aspect ratio AR=3. 45° backward sweep (top) no sweep (middle) 45° forward sweep
(bottom). The corresponding flow adapted grids are also shown. Contraction of wake
is approximated with that due to wing thickness effect.

The grid on both sides of the propeller blade is then determined by moving the

grid of the blade normal to the three dimensional blade camber surface by an

amount equal to +¢/2.
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e Construct the new trailing wake grid based on the contraction angle, ¢, at the

tip. The ultimate wake geometry is kept the same to that of the conventional

grid.
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Figure 2-14: Circulation distribution on a circular planform hydrofoil; [7/c|mez = 0.2,
« = 5.73°. Predicted by applying the BEM on the flow adapted grid; before and after

applying the IPK condition.

STEP 3

e Apply the panel method on the FLAG which was generated in STEP 2. De-

termine the perturbation potential distribution and calculate the contraction

angle at the trailing edge.
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Repeat STEPS 2 and 3 until the contraction angle is converged. Usually 2 or 3
iterations are enough. Finally, calculate spanwise circulation distribution, pressure
coefficient and thrust/torque on the blade. This grid for propeller N4990 is shown
in Figure 2-12. This iterative procedure for determining FLAG has been applied for

several wings and propellers and the results will be shown in the next section.
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Figure 2-15: The effects of thickness sources/or sinks on the flow field in the wakes
of elliptic planform hydrofoils. The effect of sinks on the wake is stronger than that

of sources.

2.4.2 The FLAG on Wings

The BEM is applied on three hydrofoils with the following characteristics:

e Elliptic chord distribution in the spanwise direction.

e Aspect Ratio AR=3.
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e Modified NACAG66 thickness distribution with 20% maximum thickness to chord

ratio (constant in the spanwise direction)

e Sweep angle varying from —45° (forward sweep) to 0° and 45°.
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Figure 2-16: Tip vortex trajectories predicted from analysis and measured in experi-
ment. Elliptic planform hydrofoil; & = 15.5°, [7/¢]mez = 0.15, aspect ratio AR = 3.

The circulation distributions predicted from applying the BEM on the conven-
tional and the flow adapted grid are shown in Figure 2-13. Notice that as the sweep
angle decreases the difference between the two circulation distributions increases.
This is due to the drastic contraction of the wake geometry, also shown in Figure
2-13, as the planform is swept forward. The wake contraction is increasing as the
planform is swept forward, because the thickness sinks at the aft part of the plan-
form, shown in Figure 2-15, have a stronger effect on the wake streamlines at the
tip than the sources at the forward part. In addition, the circulation distributions
before and after applying the IPK condition for a circular wing planform hydrofoil

are shown in Figure 2-14.
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Figure 2-17: Circulation distributions predicted from BEM (after IPK condition) and
Vortex-lattice Method (including the thickness loading coupling) for different grid
arrangements. The analytical solution of zero thickness (Jordan, 73) is also shown.
Circular planform hydrofoil ; [7/¢]mez = 0.2, = 5.73°. Conventional grid(top),
BOG(middle), FLAG(bottom).
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Notice that the two curves are closer to each other than they were in the case of

the conventional and the blade orthogonal grid as shown in Figures 2-4, 2-8.

" PRESSURE DISTRIBUTION |
C,  (r/R=0.9593) :

PRESSURE DISTRIBUTION
(r/R=0.2596)

Figure 2-18: Pressure coefficients predicted from BEM applied on the flow adapted
grid (after IPK condition) ; propeller N4119, J = 0.833, where /R is defined at the
trailing edge.

Finally, the elliptic planform hydrofoil used in the experiment by Arndt et al. [2]
is analyzed by the present method. In particular, the trajectory of the tip vortex
is determined, by considering only the effect due to hydrofoil thickness. The span-
wise coordinates of this trajectory are then superimposed to those of the tip vortex
trajectory predicted by Krasny [37], who only included the effects of the wake sheet

roll-up. The results are shown, together with the experimental results, in Figure 2-
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16. Notice that, under the examined condition, the effects of the wake sheet roll-up
and that of the hydrofoil thickness on the predicted tip vortex trajectory are equally

important, and that when both are included, the trajectory of the tip vortex matches

the observed very well.

Figure 2-19: Mean velocity vectors along the trailing edge of the propeller N4119 ;
J = 0.833. Predicted by applying the BEM on the flow adapted grid.

However, in order to validate the prediction methods completely, more compar-
isons with experiments at several conditions are required. In addition, further com-
putations which also include the effects of viscosity on the hydrofoil loading, thus on

the strength of the wake vortex sheet, must be carried out.
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When the flow adapted grid was applied on a circular planform hydrofoil, the
performance of the boundary element method was found to improve substantially. In
addition, the results from applying a vortex-lattice method on the same grid were
found to be in very good agreement to those from the boundary element method as

shown in Figure 2-17 [36].

S 40
T~ |
R -
Ny :
R 5
R
& 30F
~ -
—~ L
2.0
1.0}
i —O—— BEFORE IP.K.
- ——~e—— AFTER IP.K
O'OullIlllll!ll!!l‘ll!lll!lllr/R
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2-20: Circulation distribution on the propeller N4119; J = 0.833. Predicted
by applying the BEM on the flow adapted grid; before and after applying the Iterative
Pressure Kutta condition.

Thus, previous differences between the results from the boundary element and the
vortex-lattice method have been reconciled when the flow adapted grid was incorpo-
rated. In this comparison, the Vortex-Lattice Method (VLM) is modified to include

FLAG as well as the effect of coupling between thickness and loading from Kinnas
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134].

2.4.3 The FLAG on Propellers

The BEM with FLAG is applied to several propeller blades and the results are com-

pared with experimental data.
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Figure 2-21: Circulation distributions predicted by the BEM applied on the conven-
tional and the flow adapted grid.

e PROPELLER N4119

N4119 is a typical propeller with large tip chord and no skew. The resulting
pressure distributions are shown in Figure 2-18. In this figure it can be seen that

the pressure distribution near the tip region obtained by using the flow adapted
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grid is less singular than that from the conventional grid, shown in Figure 2-5.
The resulting total mean velocity vectors along the trailing edge are shown in
Figure 2-19. Comparing Figure 2-19 to 2-6, we notice that the singular behavior
of the velocity vectors at the tip has disappeared and that the resulting flow in
the wake is aligned with the wake gridlines. Figure 2-20 shows the predicted
circulation distributions before and after the iterative pressure Kutta condition
to be practically identical. In the case of the conventional grid, the difference
between the circulation distributions (before and after IPK), shown in Figure
2-3, appears to be slightly larger. In addition, the number of iterations for the
iterative pressure Kutta condition to converge (about 4-5) is much smaller than
that in the case of conventional grid. The circulation distributions from the
conventional and the flow adapted grids are shown in Figure 2-21. They appear
to be very different, not only at the tip but over a large part of the propeller

radius.

Number of Blades 15
Hub/Diameter Ratio : 0.3
Section Meanline : NACA a=0.8

Section Thickness Form : NACA66 (Modified)

|r/R| P/D | zm/D | O(degree) | ¢/D | flc | t/D |

0.30 || 1.183 | -0.0004 0.00 | 0.1776 | 0.00202 | 0.04442
0.35 || 1.360 | -0.0123 -4.53 1 0.2099 | 0.00533 | 0.03820
0.40 || 1.516 | -0.0237 -7.53 | 0.2412 | 0.01059 | 0.03377
0.45 || 1.642 | -0.0338 -9.21 | 0.2714 | 0.01657 | 0.03121
0.50 || 1.731 | -0.0414 -9.75 | 0.3020 | 0.02297 | 0.03041
0.60 || 1.795 | -0.0458 -7.69 | 0.3620 | 0.02980 | 0.02929
0.70 || 1.719 | -0.0395 -3.12 | 0.4200 | 0.02834 | 0.02780
0.80 || 1.547 | -0.0278 4.12 | 0.4690 | 0.02036 | 0.02533
0.90 || 1.341 | -0.0141 13.41 | 0.4650 | 0.00932 | 0.02102
0.95 || 1.245 | -0.0072 18.82 | 0.3900 | 0.00333 | 0.01642
1.00 || 1.163 | -0.0000 24.74 | 0.0000 | -0.00270 | 0.00000

Table 2.1: The geometry of the propeller N4990.
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Notice that the values of the circulation distribution from FLAG extend up to
the radius of the computational tip, which in this case was at 0.95R. Had the
circulation distribution from FLAG been scaled with respect to its correspond-

ing tip radius, it would result into a circulation distribution which would be

practically identical to that from the conventional grid.
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Figure 2-22: Panel arrangement for propeller N4990.

e PROPELLER INN4990

N4990 is a highly skewed propeller. The geometry of propeller N4990 is given in
Table 2.1. The panel arrangement on the blades and hub are shown in Figure 2-
22. This propeller combines a wide tip geometry and a high skew at the tip. The

pressure distribution, predicted from the BEM applied on the conventional and
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the flow adapted grids, are shown in Figures 2-23 and 2-24, respectively. Notice
the singular behavior of the pressure at the tip in the case of the conventional
grid. It should be noted that the circulation distributions (not shown) from the

two grids are almost identical.
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Figure 2-23: Pressure coefficients predicted from BEM applied on the conventional
grid (after IPK condition); propeller N4990, J = 1.270.

This is attributed to the negligible change in the radial location of the com-
putational tip, due to the combination of high skew (which may be seen as
equivalent to the “backward” sweep in the case of wings as shown by Kinnas
et al. [36] ) and wide chord at the tip. The convergence of inviscid values of
Kr, Ko and 7 with number of panels is shown in Table 2.2 for the design J.

It should be noted that the effect of hub was not included in this convergence
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test. A 60 x 30 grid seems to be adequate for this high skew geometry case. In
order to compare the results to those from experiment (supplied by Dr. Jessup
of DTMB) we carried out a calculation with a 60 x 30 grid in which the paneling

on the hub was also included.
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Figure 2-24: Pressure coefficients predicted from BEM applied on the flow adapted
grid (after IPK condition); propeller N4990, J = 1.270.

The viscous effects on the forces were estimated via a constant friction coefficient

Cp, assumed to be equal to 0.005. The viscous force was computed by the

following equation ;

1
Fy = 2P CF/S \Vrorar| VrorardS
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where Vrorayr is the total velocity on the surface of the blade. Table 2.3 shows
Kr,Kg and n with and without viscous effects, versus the measured values.
The differences between the experimental and the computational results are

within 5%.

PROPELLER N4990 (J=1.270)
( Cr = 0.0& With Leading Edge Suction )

[ CONVENTIONAL [ Kr [Kox10[ 7 |

40c x 20s 0.2319 | 0.5519 | 0.8492
60c x 30s 0.2406 | 0.5759 | 0.8442
80c x 40s 0.2384 | 0.5718 | 0.8430
90c x 40s 0.2379 | 0.5693 | 0.8448

Table 2.2: Convergence of K7 and Kg (Cr = 0).

PROPELLER N4990 (J=1.270)
( With Hub)

| CONVENTIONAL [ Kr [Kox10] n |

Cr = 0.0000 0.2392 | 0.5753 | 0.8403
Cr = 0.0050 0.2292 | 0.6732 | 0.6851

| EXPERIMENT [ 0.243 | 0.691 [ 0.709 ||

Table 2.3: K7 and Kg with and without viscous effect.

| GRID [ J [ Kr [ERROR ]| Ko x 10 | ERROR ||
CONVENTIONAL [/ 0.833 | 0.149 | 2% 0.306 9%
1.100 || 0.033 | 3% 0.114 8%
FLAG 0.833 | 0.143 | 2% 0.286 2%
1.100 [ 0.034 ] 0% 0.113 7%
EXPERIMENT [ 0.833 || 0.146 0.280
1.100 | 0.034 0.106

Table 2.4: Force coefficients of propeller N4119 ( Cr = 0.005 ).




These force parameters were compared to those from the flow adapted grid for
different J’s, as shown in Figure 2-25 and Table 2.4. The coefficients from the
flow adapted grid were much closer to the experimental values. Especially, the

value of Kg was much closer to the experimental value as shown in Table 2.4.
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Figure 2-25: ; Force coefficients of propeller N4119.: with hub effect, Cr = 0.005,
J =10.833,1.1.

2.4.4 Numerical Validation

In this section in order to validate the results of panel method with FLAG, a conver-
gence test of the results from the method for a wide tip propeller (N4119) and the

consistency test of the method, also for a wide tip propeller (N4118) are performed.

e Convergence Test for Propeller N4119.

In this test, the convergence of the circulation distributions is examined, as the

number of panels in both chordwise and spanwise directions are increased. The
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convergence of the resulting circulation distribution from applying the BEM
on FLAG with varying numbers of chordwise and spanwise panels is shown in

Figure 2-26. A 40 x 20 grid appears to produce convergent results.
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Figure 2-26: Convergence test for N4119 propeller.

o Consistency Test for Propeller N4118

A test of the consistency of lifting surface and panel method can be made by
linearly extrapolating to zero thickness the results of a sequence of panel calcu-
lations for different thickness ratios. The panel calculations are made for a set
of geometries which are identical except for a constant scale factor applied to
the thickness. The circulation distribution for zero thickness is then determined

by linearly extrapolating with thickness the circulation from the panel method.
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This zero thickness “panel method” result is then compared to the result from
the lifting surface analysis method by Greeley and Kerwin [16]. The results
for the N4118 propeller are shown in Figure 2-27. The circulation distributions
from the panel method (applied on FLAG) for different thickness scale factors
(100% corresponds to the original thickness distribution) appear to extrapo-

late smoothly (linearly) to the circulation distribution from the lifting surface

method.
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Figure 2-27: Consistency test for N4118 propeller.

Notice that as the thickness decreases the location of the computational tip
approaches the actual tip. The extrapolated panel method result versus the
lifting surface result is shown at the bottom part of Figure 2-28. The consistency

test in the case of applying the panel method on the conventional grid has been
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performed by Hsin [24] and the results are shown at the top part of Figure 2-28.
A 3% difference between the maximum circulation from the panel method and
the lifting surface method was reported by Hsin [24]. This difference appears
to become smaller in the case of the flow adapted grid, as can be seen in Figure

2-28.

In this chapter, the flow adapted grid was incorporated in an existing BEM
for the analysis of propeller tip flows. The proposed grid has been found to
predict the flow and pressures at the tip more reliably than when employing the
conventional grid. For wide tip blades with zero skew (N4119) the predicted
circulation distributions were found to be different from those employing the
convention=l grid, primarily due to the change of location of the tip detach-
ment point in the case of the flow adapted grid. On the contrary, for wide tip
blades with high skew (N4990) the proposed grid did not affect the predicted
circulation distribution even though i\ improved the predicted pressures at the
tip substantially. In addition, the flow adapted grid was found to improve the
validity of the consistency test between the boundary element and vortex lattice

method for the N4118 propeller.
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Chapter 3

The Vortex Sheet Roll-Up

In the previous chapter, the trailing wake sheet was assumed to be aligned with the
velocities at the trailing edge in the wake. The effect of wake sheet roll-up was ignored.
In reality, the trailing wake sheet is rolling up into a core containing the vorticity shed
from the tip region. This roll-up effect is considered to be of the primary mechanism
of the tip vortex structure. In addition, when the propeller is heavily loaded or the
circumferential velocity due to the rotation of the propeller is large compared to the
forward velocity of the ship, the sheet passes very close to the following blades and
the wake sheet roll-up results in a change in loading, velocity field and pressures on
the propeller blades. In this chapter, the vortex sheet roll-up will be calculated in
two and three dimensions by using various methods, and the results will be compared
with each other. In Chapter 5, the wake sheet roll-up will be included in the flow

adapted grid.

3.1 Two-Dimensional Method

3.1.1 Vortex Blob Method

The conjugate complex velocity G(z) induced by a two-dimensional vortex sheet of
strength (s, t) = O['/ds situated on the curve C(s) is given by the Rott-Birkhoff

[67], [6] nonlinear integro-differential equation ;
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1 y(s',t)ds

Ue — Ve 3.1
2ir Jo z — z(5, ) * ' (3:1)

G§(z) = u—iv=

where U, and V, are the components of the incoming flow evaluated at z as shown in

Figure 3-1.

(u,v)

Figure 3-1: Velocity and vorticity diagram.

The Cauchy principal value is assumed for the integral in equation (3.1) in order
to calculate the velocity at points on the sheet. Equation (3.1) has been generalized
to the case of a vortex sheet with small thickness by Moore [57]. If the circulation I'

is chosen as the Lagrangian variable, equation (3.1) may be written from Birkhoff [6]

as,

0z : 1 dr’ .
—(,t) = u"w_%/cz(l“,t)—z(r',t)+Ue_ZV;Z (3.2)
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Equations (3.1) and (3.2) ensure the continuity of pressure across the sheet and the
conservation of circulation around a segment lying between any two points moving
with the sheet. Equation (3.2) must be solved numerically, since an analytic solution
does not exist.

In the vortex blob method, the vortex sheet is replaced by a finite number of
points, namely “blobs”, which are assumed to be rigid. Then the motion of the sheet
is approximated by calculating the trajectories of the blob. For example, when the
trailing vortex sheet of a wing is represented by an array of N line vortices, equation
(3.2) reduces to an initial value problem, consisting of a set of 2NN first order ordinary
differential equations whose solution requires suitable smoothing technique. Many
numerical attempts have been made with different smoothing techniques, such as
amalgamation by Ham [17] and Fink and Soh [13], subvortex model by Maskew [46],
rediscretization by Fink and Soh [14] and Sarpkaya [69], and cut-off scheme by Krasny
[37] and Kuwahara [39].

In this section, Krasny’s method [37] will be described briefly. The discretized

form of the equation (3.2) may be expressed as,

1 I
up — Wy = —— I+ (Ui — (Vo) (3.3)

ik = 2k — %5

In desingularizing the vortex sheet equation (3.3), an artificial smoothing param-

eter, §, is applied at the right-hand side of equation (3.3).

. 1 L |2 — 2| :
U — W = ——— Z + (Ue)k - Z(m)k (34)

e T %k T % [zk - Zj|2 + 62

The equation (3.4) is no longer singular at z; = z; for § > 0. As ¢ goes to zero,
equation (3.4) converges to the original equation (3.3). Krasny [37] demonstrated
that the numerical solutions of the vortex blob equations (3.4) for different values of

§ converge to a limit curve as 6 — 0 and this curve can be interpreted as a weak
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solution of the original vortex sheet evolution equation (3.1).
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Figure 3-2: Roll-up behind a lifting line with elliptic loading predicted by
Krasny(1987) ; § = 0.05, N = 200, At = 0.01.

Two examples are shown in Figures 3-2 and 3-3. The cases studied are the vortex
sheet roll-up for a lifting line with elliptic loading and an embedded vortex sheet in
two-dimensional uniform flow. The methods predict the vortex sheet roll-up very
smoothly even in the late stage because ¢ provides the damping of short waves. The
method also shows good convergence with number of panels. However, the use of

vortex blobs has the following problems :

e Mathematically, the linear sum of vortices cannot constitute an exact solution

of the nonlinear equations of motion.
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e Near the core, each blob is not allowed to distort because the blob is assumed

to have an invariable core shape and size.

e Finally, it is time consuming and difficult to extend to three dimensions.
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Figure 3-3: A vortex sheet embedded in two-dimensional uniform flow; § = 0.5, N =
400, At = 0.1. Predicted by Krasny [37].

3.1.2 Discrete Vortex Method

The velocity induced by the vorticity concentrated in a bounded region is given by

Bachelor [5]
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u(r,t) = /// ror) xwlr, t)dV(r/) (3.5)

'r'—'r]

where 7 is a position vector from a point in a bounded region to a field point.
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Figure 3-4: Cross section of the wake sheet behind a lifting line of 2 f¢ span with
elliptic loading. The circulation at midspan is 3ft*/sec. 99 trailers are taken at even

spacing.

If the vorticity is concentrated in a single curved filament of circulation I', equation

(3.5) reduces to the Biot-Savart law

65




u(r,t) =

r r(s) —r'(s)) x dr'(s
—E/C( ( )|r(s) <— 7)"?(3')|3 = (3:6)
where 7(s) describes a position vector of the filament centerline in terms of the ar-
clength s.

Equation (3.6) yields an infinite self-induced velocity if the filament is curved and
zero induced velocity if it is straight as explained by Bachelor [5]. Several methods
have been introduced to handle this, such as the Local Induction Approximation by
Hama [18]. However, the only way to get the desired shape of the roll-up, is to ignore
this term.

In this section, the vortex sheet is represented by a series of discrete line vortices.
The calculations are done midway between vortices to avoid an infinite self-induced
velocity. For each location, the velocity due to each element is calculated and summed
to obtain the total induced velocity V at each point on the sheet. Starting at the

trailing edge, a new location of the sheet is formed by
Tinp) = Tnp-1) T Vinp-1) - O

where n describes the number of iteration and p is the index for station along the
streamwise direction. The result for the lifting line with elliptic loading is shown in
Figure 3-4. This method seems to predict the shape of the roll-up smoothly. The
method can very easily be extended to three dimensions. However, the choice of vortex
spacing has an effect on the ultimate shape of the roll-up and also, there are difficulties
with this method even for two-dimensional flow simulation. First, the vortex filaments
are singularities and hence create large velocities in their neighborhood. This causes
instabilities and physically impossible sheet crossings along and near the edges of the
sheet. The second difficulty is in the CPU per time step. The number of operations
required for the velocity calculation is proportional to N2, where N is the number
of vortices. Thus, the CPU time increases significantly as the number of vortices

increases.
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3.1.3 Panel Method

There have been a large number of attempts to model the vortex sheet motion by
replacing the continuous vortex sheet with a finite number of discrete vortices. How-
ever, it appears that despite these various attempts, the discrete vortex representation
results inevitably in numerical instabilities, i.e. chaotic motion, when the number of
vortices is increased. It must also be noticed that the question of the existence and
uniqueness of the solutions for equations describing vortex sheet motion has not yet
been fully resolved as mentioned by Moore [58]. So, it can be said that the discrete
vortex method is not adequate to compute vortex sheet roll-up reliably. Recently,
panel methods have been applied in order to get more reliable and accurate rep-
resentations of the vortex sheet roll-up in two dimensions. The method has been
extensively described by Faltinsen and Petterson [12] and Hoeijmakers [22]. The ear-
lier attempt by Mokry and Rainbird [55] using a low-order panel method seemed
promising, but numerical instabilities still appeared. It has been suggested that the
use of a high-order panel method is more accurate than the low-order panel method
or the discrete vortex method to compute the velocity field, since it precludes the
appearance of instabilities in the vortex sheet due to the spurious numerical effects
introduced by a too crude representation.

In this section, a high order-panel method is used to compute the velocity field
induced by the multiple segmented vortex sheet in two dimensions. The vortex sheet
is modeled by piecewise continuous dipole distributions. The velocity, g, at a point
(z,y) induced by a dipole distribution I'(¢) on a sheet C(¢) is written as

_ 1 dl'(t), [ 0
¢ = Vol,y) = —5 /C(t) == V(an logr) di (3.7)

where ¢ is a parametric variable along the sheet C(t) and dl is a differential element

of length along C(¢).

The curve C(t) is divided into number of panels as shown in Figure 3-5. Then,

equation (3.7) becomes
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B I ) (0 .\
qg; = Vé(zi,y)=— Z/C(tj) pn V<8nj log‘rw) dl; (3.8)

where subscript i is an index for a field point and j denotes the functions on the j-th
segment. On each panel, the function I'(t) is approximated by piecewise quadratic

representations. Let I'(t) = ag + a;t + agt?.

Y
ﬁg 7, Z, {2

k,=(k+k,, )/2.0

Figure 3-5: Vortex sheet arrangement.

Then, equation (3.8) can be expressed as :

4 = Vol =-o3 [
. J

0
o (a1 -+ 2a2tj) A\ ('——‘ lOg Tz',j> dl] (39)
t5)

67?,]‘

The integrals in equation (3.9) can be expressed in closed form. For a field point
in the far field, the computation time is saved by using the multipole expansion
rather than the closed form. To avoid spurious effects from the panel edges where the

geometry and the dipole distribution may be discontinuous, the panel midpoints are
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chosen as the control points.

The detailed computational scheme is as follows.

1. For a given position and strength of the sheet at time 7, the induced velocity

components (U;, V;) are computed at the panel midpoints (£,).

VORTEX BLOB

-------- PANEL METHOD

0.5

Ill!]lllll

0.0
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~
(@

t( time )
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Figure 3-6: The shape of the roll-up behind a lifting line with elliptic loading.

2. The panel midpoints are advanced in time by a simple Euler scheme, i.e. by
an amount of (U;A7,V;AT), where AT is chosen such that each midpoint is
not moved more than A¢;. The new position of the end points ¢, and ¢y are

found by a quadratic extrapolation from the new values of the three nearest

midpoints.
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3. The new values of z(¢;), y(f;) and I'({;) are then the input data for a cubic

spline procedure.

1.0
I |
05k ?
ook
051
[ N=100,At=0.02
1.0 N=200,At=0.02
- N=300,At =0.01
_1‘5—...,t....l,,,ml..1|..l,|.1,41X

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3-7: Convergence test of the results from the panel method. The vortex sheet
at t = 1.0 behind the lifting line with elliptic loading.

4. With the cubic spline representation for z(¢), y(¢) and I'(¢), a rediscretization
scheme, called “adapted curvature-dependent” [22], is applied, which computes
the values of the panel edges (¢;). Using the rediscretization method, the panel
edge points are computed such that ¢;1; = t; + Ao, unless At; spans an arc
of more than 6,,,, degrees of a circle with a radius equal to the average radius
of curvature within [¢;,t;41]. In the latter case, t; = Opnaz/kn, Where k, is the
average radius of curvature in the interval. The value of A, and 0,4, are user

specified. For example in this chapter, A, and 0,,,, are set equal to the ratio
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of total arclength of the sheet to the number of panels and 45°, respectively.

5. Finally, the new values of z(¢;), y(¢;) and I'(t;) are computed via the cubic

spline approximation.
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Figure 3-8: The wake profile for a heaving hydrofoil.

This procedure is repeated until the geometry of the vortex sheet is converged.
As a test of this method, the same problem as that shown in Figure 3-2 is solved and
the result is compared to that from applying the vortex blob method, described in
Section 3.1.1. The resulting geometries of the vortex sheet roll-up predicted by the
two methods are shown in Figure 3-6. The comparison shows that the results from
the two methods agree well to each other except inside the core. This discrepancy

in the core will be discussed in section 3.2.3. A convergence test of the results from
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this method is shown in Figure 3-7. Figure 3-7 shows a clear convergence trend with
increasing number of panels. This method is also applied to the two-dimensional
unsteady hydrofoil problem for the purpose of extension to the three-dimensional

unsteady propeller problem.

C

L;s-
i — o PANEL METHOD
. THEODORSEN FUNCTION
10l
0.5%
0.0+
05k
Lo NUMBER OF ELEMENTS N = 50
[ FREQUENCY (w=7) UAt/c = 0.02
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Figure 3-9: Comparison of analytic and numerical solutions for the heaving hydrofoil.

Figure 3-8 shows the wake shape behind a heaving hydrofoil. In Figure 3-9, it
is shown that the lifting coefficient from the present panel method agrees very well
with that from the analytic method, given by the well known “Theodorsen function”
(Newman [62]). For a two-dimensional calculation of the vortex sheet roll-up, it is
shown that the high-order panel method predicts the geometry of the vortex sheet
roll-up reliably and smoothly. In addition, this method is much faster than the vortex

blob method and is very easy to extend to three dimensions.
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3.2 Three-Dimensional Methods

A number of three-dimensional flow models have been implemented for the prediction
of wake sheet roll-up. These consist of the discrete vortex/strip theory methods,

vortex lattice methods and panel methods. Existing models will be summarized first,

and then a new high-order panel method will be described.

Figure 3-10: A model of the tip vortex core.

3.2.1 Discrete Vortex/Strip Theory Method

The discrete vortex method can be easily extended to three dimensions in a strip-
wise sense. This method can predict the geometry of the vortex sheet. However,
the method does not include three-dimensional effects such as the concentration of
vorticity in the core region because the streamwise velocity is assumed to be constant.
This three-dimensional effect was first modeled by Cummings [8]. In this section, his
modeling and numerical implementation will be discussed. The classical discrete vor-

tex method as mentioned earlier suffers from lack of convergence. The ultimate shape
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computed in the tip region depends on the choice of the vortex spacing. To avoid
this problem, a model of the tip vortex core is introduced. The tip vortex core model
assumes that the tip vorticity is spread out over a finite thickness (2a), as shown in
Figure 3-10, where a is a boundary layer thickness at the pressure side of the tip.
Within this model, even if the spacing becomes fine, the resulting shape of the vortex
sheet will not be singular at the tip. As for the modeling of the three-dimensional ef-
fect, it will be impossible for any concentration of vorticity (in addition to that due to
the two dimensional roll-up) to occur in a model which assumes that the streamwise
velocity is constant. A concentration of vorticity implies a concentration of fluid since
the vortices move with the fluid. The only model which can produce a concentration
of fluid is a sink in the core, which increases the axial velocity and decreases the core
pressure. Far downstream, a concentration of vorticity can occur in two ways. The
roll-up of the vortex sheet increases the circulation surrounding the core and any flow
into the core brings in circulation from the sheet. The first effect, due to the vortex
sheet roll-up, is small in any case, because the sheet vorticity is small compared to
that in the core. The second effect is a major source of increasing core circulation due
to absorbing of the trailing vortex sheet into the core. This effect can be modeled as
follows. A length Az of the core is considered with a pressure force F' acting on 1t in
the axial direction as shown in Figure 3-11. The radial velocity V' is assumed at first
to be zero. Consider the continuity and momentum equations in the z-direction over
a control volume of radius a and length Az. As explained in Appendix B, a can be
assumed to be constant and the flow inside the core(as defined in Appendix B) to be
inviscid.

From the continuity equation,

2V

where U is an inflow velocity outside of the core; u; and F; are the induced velocity
and the acting force on the upstream side of the core, respectively; uy and F, are the

same variables on the downstream side of the core.
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From the momentum equation in the x-direction,

pra’ui + Fy = pra*u} 4 2rapVUpAz + Fy
F = F - F=pra(a} - au} - 2AzV ;) (3.11)

Combining equation (3.10) and (3.11),

: a 4F
V e m’" l:UO - 2U1 + \/(Uo - 2U1)2 + }

pr2a?

Figure 3-11: Control volume of the vortex core.

The resulting radial velocity V means that a sink of strength 2waV” per unit length
is pulling fluid and sheet vorticity with it toward the core. In this calculation, the
stretching effect of the vortex sheet is neglected. This model predicts a decreased
pressure on the downstream end and a resultant increase of axial velocity and sink
strength. The calculation is repeated until the radial velocity converges within a

desired tolerance. The new vortex positions may now be calculated and the process
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moves to the next downstream position. Figure 3-12 shows the geometry of the vortex
sheet roll-up behind an elliptically loaded lifting line by applying the core and sink
model. In this figure, the assumed core is also shown. In Figures 3-4 and 3-12, it is
shown that the concentration of the vorticity does not give an effect on the geometry
of the vortex sheet. Only the pressure and the trajectory of the tip vortex are affected.
The calculation of pressure in the core is explained in Appendix B. The use of the
strip theory model in the discrete vortex method provides savings on the computation

time.

0.5
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0.0
r_
S TR S DA
0.0 0.2 0.4 0.6 08X

Figure 3-12: Cross section behind an elliptically loaded lifting line with a core and
sink model. Predicted by using the model of Cummings(8].

The described core model predicts both the minimum pressure in the tip vortex

core and the motion of the sheet with reasonable accuracy. On the other hand, the
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velocity and pressure distributions on the body can not be accurately predicted with

this model. In addition, this method is not fully three-dimensional.

3.2.2 Vortex Lattice Method

This method approximates the bound vortex sheet by a bound vortex lattice and the
free vortex sheet by a set of segmented free vortex lines. Each element is associated
with a horseshoe vortex. Discrete line vortices trail to infinite downstream along
the trailing and side edges. Their alignment with the local flow direction provides
the necessary boundary conditions on the vortex sheet. The strengths of vortices
are determined through the use of an iterative technique by imposing the kinematic
condition at the midpoint of the 3/4 chord line of the elements. This method has
been widely used and considerably improved by Kandil [30], Rom [65], Almosnino [1],
and Keenan [31]. The results have shown that the model is rather crude and exhibits
undesirable singular behavior. Even though overall forces are predicted well, the local
velocity or pressure distribution on the body and the vortex sheet geometry are not
sufficiently accurate. In addition, increasing the number of vortices makes the matter

worse as shown by Rusak et. al [68].

3.2.3 Panel Method

In the panel method, the vortex sheet is modeled by a piecewise continuous dipole
distribution, thus reducing the singular behavior, which is present in the case of line
vortices. Many attempts have been made with this method, such as Suciu and Morino
[72], Johnson et al. [29], and Hoeijmakers [21]. In this section, a new high-order panel
method will be introduced.

Assuming that the circulation is given as I'(¢) along the arclength (¢) , then the

dipole strength on the vortex sheet can be found from,
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0pt 09~ _ OAS(t)
ot ot ot

Therefore,
L(t) = —Ad(1)

where ¢ is a parametric variable along the lifting line, and u* and u~ are velocities

on the upper and lower surface, respectively as shown in Figure 3-13.

Figure 3-13: Velocity diagram on a lifting surface.

Equation (3.7) can be generalized to the three-dimensional problem by replacing
the two-dimensional source expression logr and 27 by the three-dimensional source

expression 1/r and —4m.

g = Vélr,y) = Zl%/sr(t)v <(%%> ds (3.12)

where S is the surface of the vortex sheet.
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The vortex sheet is divided into a number of panels as shown in Figure 3-14. The

control point is set at the centroid of the panel. Then, equation (3.12) becomes

(3.13)

INITIAL GEOMETRY

AFTER 2-ND ITERATION

AFTER 3-RD ITERATION

Figure 3-14: The geometry of the trailing vortex sheet for a lifting line with elliptic

loading; Uy = 1, At = 0.15 and [y = 1.0ft?>/sec. The low-order panel method is

used with 16 and 31 spanwise and streamwise number of panels, respectively. Notice

divergence of roll-up shape at the 3-rd iteration.
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If a planar quadrilateral panel and a constant strength dipole on the panel are

assumed, equation (3.13) can be rewritten as

v <—3- 3-) as, (3.14)

S; 3nj Tij

Vo, = (u,v,w)= EZF(tj)/

The integrals in equation (3.14) can be computed analytically by using the ex-

pressions developed by Newman [63].

Figure 3-15: The geometry of hyperboloidal panel.
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The velocities at the control points on the vortex sheet are computed first , and
the velocities at the edges of the panels are extrapolated from those at the control
points. Then the panel moves with velocity (u + U,v + V,w + W), where (U, V, W)

are the components of the incoming velocity.

Figure 3-16: Bi-quadratic dipole distribution on a panel with nine nodes.

This procedure is repeated until the geometry of the vortex sheet converges. The
result for a lifting line with elliptic loading, is shown in Figure 3-14. The low-order
panel method has failed after three iterations. It seems that the planar quadrilateral
panel can not model the highly rolled-up region accurately, due to the discontinuity
(gap) in geometry and in strength of adjacent panels. As a more accurate and reliable
tool, a hyperboloidal panel and a high order strength of the dipole are used.

A hyperboloidal panel is defined in Figure 3-15. Surface ¥ is a hyperboloidal sur-

face determined by four vertices 11, €12, 21, 22, and the surface S is a projected
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surface on a local coordinates (£,7). All the points on the panel can be expressed as

Z(&,n) = ao+a1§+an+axdn
-1<¢<1, -1<n<1 (3.15)

'/ /OSTA;"IONJI
/’"///////
'%//i////
x‘\'\\ \
/\/ / / // 7/
i /¢/ J

O STATION 3

T }\W

:’/ /
.
/L//L//L/

Figure 3-17: The first iteration of the iteration scheme.
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The vertices thus can be expressed as follows ;

7 | (1 -1 -1 1 || a]
Fo| |11 -1 1|«
ol |1 -1 1 1] a
| Z22 | 1 1 1 1_ | a3 |

Figure 3-18: Second or higher iteration of the scheme.

By inverting this matrix, ag, a;, a; and a3 can be obtained from the vertices, (Hsin
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[24]).

4o | (1 -1 -1 1| [ 2 ]
| 1|1 1 -1 1|
Y I R R N
3 11 1 1| f

A bi-quadratic dipole strength is assumed on the panel. The strength of the dipole

in the local coordinate system can then be expressed as
D(€,m) = bo+bi& + ban+ bs€n + ba&” + bsn® + b€’ + br&?n + bs&%n” (3.16)

The coefficients b; can be determined from the dipole strengths at the nine node
points on the panel, as shown in Figure 3-16. The 9 x 9 matrix equation, which must

be solved, is

P 1 -1 1 -1 1 -11 =11/
Flio 1 -11 0 0 00 00]]|h
Foi, 1 -1 1 1 -1 11 11|/t
Fo1 1 00 -1 0-11 00]]|bs
Foo | = |1 00 0 0-10 00][]b
Fos 1 00 1 0-11 00]][b
Fi_y 1 11 -1 -1 -11 11]]b
Fio 1 11 0 0 00 00]|]b

| Ry | 1 11 1 1 11 11][bs)]

Now, from equations (3.15) and (3.16), equation (3.13) can be rewritten as,

1
Voi = =5 [ (b0 bi€ + ban+ boEn + bat” + bar” + bo” + br€n
7 J

+bg&%n*)V (—?—-i> dS; (3.17)

anj Ti,j
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The calculation of the integrals in equation (3.17) over the hyperboloidal panel
(S;), is described in Appendix C. The following iteration scheme is introduced in order
to satisfy the force-free condition on each panel in the vortex sheet. To accelerate
the iteration process, an idea similar to that in over-relaxation schemes is adopted in
the first iteration (Nagati et al. [61]). Namely, in the first iteration the calculation of
the wake surface is proceeding from the first station to the last section downstream

of the trailing edge as follows (shown also schematically in Figure 3-17).

Figure 3-19: The geometry of vortex sheet behind a lifting line with elliptic loading.
Predicted by the present method.

o The total velocities at the control points of the current row of the panels are
computed from equation (3.17). The velocity at the edge of the vortex sheet is

computed from extrapolation.
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e Use these velocities to find new location of panels on the current row.

e The panels downstream of the current row are moved by the same amount as

those at the current row.
e Repeat the computation until the last row of panels.

At the second or higher iteration, the procedure is altered due to the fact that
the geometry of the upstream vortex sheet will be affected by the relocation of the
vortex sheet downstream, which is ignored in the first iteration. The following steps

are used, as also shown in Figure 3-18,

Y AT Z=1.0 x SPAN
At =0.30

05
0.0t
05
-1.0F ————o—— AFTER 1-ST ITERATION
I ————o—— AFTER 2-ND ITERATION
| AFTER 3-RD ITERATION
| AFTER 4-RD OR HIGHER ITERATION
_1.5|IA[[IIll‘lll![)lll'lllll‘!(!lX

-1.5 -1.0 -0.5 0.0 0.5 1.0 15

Figure 3-20: Shape of the vortex sheet with number of iterations.

e Calculate the total velocities at all the control points in the vortex sheet.
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e Move all the panels simultaneously and find the new location of the vortex

sheet.

e Repeat the previous steps until the vortex sheet geometry is converged.

To maintain the accuracy of the spatial discretization for a stretching vortex sheet,
a rediscretization scheme is applied as the roll-up region increases. The discretization
scheme has to be refined in regions where large variations in geometry or dipole

distribution appear during the computation.

0.5+

0.0l
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Figure 3-21: Convergence test of a lifting line with elliptic loading with respect to
the number of spanwise panels.

To accommodate these requirements, the adapted curvature-dependent panel scheme

is used at each iteration, similar to that used in the two-dimensional panel method as
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explained in section 3.1.3. The basic panel size A, is chosen such that the desired
degree of accuracy in regions where no large variations occur is ensured. The second
parameter ., then ensures that at highly curved parts of the sheet the panel size
is reduced so that in each region the accuracy is maintained. Usually 8,4, is chosen
such that a circle having a radius equal to the radius of curvature is represented by
12-18 panels. This numerical scheme is applied to a lifting line with elliptic loading.
The resulting geometry of the vortex sheet roll-up is shown in Figure 3-19. Note that
this method predicts the vortex sheet roll-up very smoothly with more turns (i.e. at

larger distance from the trailing edge) than that in the discrete vortex method.

Y AT Z=1.0 x SPAN
s A1 =030

0.0

-1.0F ———o—— 20 STREAMWISE X 20 SPAN
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30 STREAMWISE X 20 SPAN
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Figure 3-22: Convergence test of a lifting line with elliptic loading with respect to
the number of streamwise panels.

The difference among the iterations is shown in Figure 3-20. This figure shows that
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two iterations is enough usually to get a converged result. Finally, more convergence
tests are shown in Figures 3-21 and Figure 3-22. Note that as the number of panels
along the spanwise and streamwise direction increases, the geometries of the vortex
sheet appear to converge to a limit. It can be concluded that the present high-order
panel method predicts a smooth and reliable (convergent) geometry of the vortex

sheet roll-up in a computationally efficient manner.
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Chapter 4

The FLAG with the Wake Sheet
Roll-Up

In Chapter 2, the flow adapted grid was incorporated in the panel method for lifting
surface flows. It was shown that using the flow adapted grid in the panel method,
the numerical results for a highly skewed propeller and a propeller with a large tip
chord, especially in the tip region, were improved substantially. However, the flow
adapted grid does not include the effect of a wake sheet roll-up, which changes the
trajectory of the tip vortex as well as the pitch of the wake sheet. In this chapter, the
flow adapted grid with the effect of the wake sheet roll-up will be incorporated in the
panel method. In calculating the wake sheet roll-up, the higher order panel described
in the previous chapter will be used. The flow adapted grid will be constructed by
using the geometry of the wake sheet roll-up, in an iterative sense.

The essential elements of the present flow model, as mentioned in Appendix B, are
- the lifting body, the trailing wake sheet, the sheet emerging from the tip (sheath)
and the roll-up core fed by the tip vortex sheet. On each of these elements, the

following boundary conditions must be imposed:

e The body surface is impermeable.
e The wake sheet cannot support a pressure difference and is impermeable as well.
e The Kutta condition is imposed along the trailing edge of the blade.
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The panel method will be modified to satisfy the boundary conditions on the body
as well as in the wake sheet. The enhanced panel method is expected not only to
improve the accuracy of the predicted pressure distributions at the blade tip, but also

to provide the foundation for predicting the tip vortex evolution.

4.1 Mathematical Formulation

Figure 4-1: A control volume for a multidomain problem.

The flow is assumed to be inviscid, incompressible and irrotational everywhere, except
in the thin wake sheet. The flow velocity can be written as a superposition of the

incoming flow U, the velocities induced by the body, V', and by the wake sheet,
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Vw. The velocity vector, thus has the form

V=Uy+Vp+Vy=Ux+Vo

where ¢ is an induced potential due to the body and the wake.
In the fluid domain ¥, as shown in Figure 4-1, the potential satisfies the Laplace

equation ;

Vi = 0. (4.1)

Denoting the body surface as Sg, the kinematic boundary condition on Sp is

Vo-n = -Ux-n (4.2)

Applying the Green’s theorem with the Laplace equation (4.1), the induced ve-

locity can be expressed by ;

B 1 9o 1
Vidlp) = 47r/ /SB[ Bnq R(p; q) 3nqu(p;q) a5
1
+ZEE / 5 Aqb(q)a—n;V———R(p; 54 (4.3)

where ¢ is a variable point in the integration and p is a fixed point which may be
located anywhere in the space. Sp is the propeller blade and Sy is the wake surface.

Equation (4.3) shows that the induced velocity due to the body and the wake
can be calculated by distributing dipoles and sources on the body and dipoles in the

wake.

4.2 Discrete Formulation

For the numerical implementation, the propeller surface and the wake sheet are dis-

cretized into hyperboloidal panels [24]. Constant strength sources and dipoles are
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distributed on each panel on the body and bi-quadratic strength dipoles on each
panel in the wake. The effect of the hub is also included by distributing panels on
the hub surface. A collocation method is applied, with the control points being the
centroids of the panels. Using equations (3.16) and (4.3), the discretized form of the

induced velocity becomes :

Nprape NpANEL NprapeE NPpANEL 8¢K
bK

S - S
K=1 j=1
Nprape M Nw
22 W
K=1 m=1l=1
N 1 // 8
Fij = 47r S; (977,] R;;

J

b= — / / v 45
7 47 S, Rz,]

1
Wimi =2 [ /. %+M&Mw+%@+M§+%f+%&”-
m,l

Vo

I

+

V dSm, 4.4
RL m,l : ( )

M€n+%§n)

where Ny 4pg is the number of blades and Np snygy is the total number of panels on a
blade, which has N chordwise panels and M spanwise panels (i.e. Npaygr = N X M).
Ny is the number of streamwise panels on each strip in the wake.

The influence coeflicients a; ; and b; ; are defined as the velocities induced at panel
¢ by a unit strength dipole and source, respectively, located at panel j on blade K.
The wake influence coefficient W i, is defined similarly, as the induced velocity at
panel ¢ due to the unit dipole at (m,[) in the wake on the blade K. The numerical
computation of these coefficients are explained in Appendix C. The strength of the
source (—‘?%K) and the dipole (¢¥) on the body and the dipole (A¢f ;) in the wake
can be found from the typical panel method after applying the kinematic condition
on the body and the iterative pressure Kutta condition at the trailing edge [42], [24],

in which case the geometry of the trailing wake sheet is assumed to be aligned with

the inflow.

93




4.3 Numerical Procedure

In order to include the effect of the wake sheet roll-up in the flow adapted grid, the
following method is implemented. The method proceeds by computing the induced

velocities at the control points in the wake, as follows.

FIRST ROW

Figure 4-2: The first iteration for the FLAG with a wake sheet roll-up. Velocity
vectors are evaluated at the control points.

1. Solve a boundary value problem by using the BEM with a geometry of the

trailing wake sheet, which is aligned with the inflow. In the case of a wing, the

94




trailing wake will be planar or cylindrical (with very high curvature) and have
the same direction as the inflow. In the case of a propeller, the trailing wake

will be helicoidal without any contraction at the tip.

Figure 4-3: The second or higher iteration. Velocity vectors are at the control points.

2. Compute the induced velocities (V¢;) at the control points of the first row of
panels in the wake from the equation (4.4). Then move the first row of panels

to the second row by using a first order Euler scheme, which is given as,

At
Tma2 = Tm1 -+ (Uoo + V'(ﬁm,l) ' 71
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Figure 4-4: Construct FLAG with wake sheet roll-up from previous iteration.

3. Adjust the downstream wake shape so that it has the same shape as the wake
at the previous row. In other words, set yx; = v;; and 2z ; = 2;; for k =
i+1,9+2, -, N1, as shown in Figure 4-2. Also check the panel size. If the

panel size is greater than the criteria A,,,;, then rediscretize the panel.

4. Repeat steps 2. and 3. until the last row of the panels. With this initial
geometry, compute induced velocities at all control points in the wake and
move the panels all together as shown in Figure 4-3. Repeat this calculation

until the geometry of the wake sheet is converged. Usually, two iterations have
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been found to be enough.

RUN PANEL CODE WITH CONVENTIONAL GRID

COMPUTE THE INDUCED VELOCITY

u FOR STATION i=1

!

FIND NEW POSITION VECTORS
Xy ;=% ;% 0.5(U,+V_ 0)At,
!
SET y,=y; & z,= 2, for k=1i+1, ... N+I
REPEAT for STATION i=3,4,...,N,+1

REPEAT PREVIOUS TWO STEPS for
STATION i=2,34,...,Ny+I

;

COMPUTE u fc;rALL STATIONS

& MOVE PANELS ALL TOGETHER

NO

CONVERGE ?
YES

CONSTRUCT FLAG &
RUN PANEL CODE WITH FLAG

Figure 4-5: Flow diagram for construction of the FLAG with wake sheet roll-up in

three dimensions.

5. With the converged wake sheet, construct FLAG and solve the BEM with the
known wake sheet roll-up surface, to get the potentials on the body and potential

jumps in the wake, as shown schematically in Figure 4-4.
6. Repeat steps 2 to 5 until the geometry of the wake sheet is converged.

The summary of this procedure is shown in Figure 4-5. In the calculation of the wake

sheet roll-up, it usually takes two iterations with given potentials on the body and
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the potential jumps in the wake. On the other hand, for the construction of FLAG
with wake sheet roll-up, two iterations are usually enough. As for the CPU, it takes
about three times as long as the panel method without wake sheet roll-up. In the
next chapter, this method will be applied to several wing and propeller geometries
The sensitivity of the results to the discretization parameters will be investigated,

and results of the method will be validated against existing experiments.
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Chapter 5

Analysis of Computational Results

In the earlier chapters of this thesis, the flow adapted grid and a new wake sheet roll-
up computation method were described and incorporated in the panel method. In this
chapter, the new method will be applied to a number of lifting surface configurations.
Two groups of applications will be presented. The first group is applications for a
series of wings and the second group is applications for a series of propellers. In order
to validate the method, the results will be compared to those from other numerical

methods and to published experimental measurements.

5.1 Wing

In Chapter 3, a new higher order panel method has been developed in order to predict
the geometry of the vortex sheet roll-up in three dimensions. The method was applied
to a lifting line with elliptic loading. In this section, in order to examine the body
effect on the geometry of the vortex sheet roll-up, the method will be applied to a

series of wings.

5.1.1 Rectangular Wing

The method is first applied to a rectangular wing of aspect ratio AR=8 at 10 degrees

angle of attack, as shown in Figure 5-1. In this calculation, the panels in the wake
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are distributed using cosine spacing in the spanwise and the streamwise directions to
emphasize the details near the body and the tip. Following the procedure explained

in the last chapter, the wake sheet roll-up is obtained as shown in Figure 5-1.

INITIAL GEOMETRY

. AFTER I-ST ITERATION

INEREA
[HRRRN
R

IRRREN
[HRER

i
Eﬂzﬁ

[

1]
|

1]
[T

T

T

Ny
/ZIIIHH
7[TTHII
NN
[T

WO

AFTER 2-ND ITERATION

Figure 5-1: Trailing wake sheet behind a rectangular wing; AR = 8, a = 10°,
(7/¢)maz = 0.01. 40 chordwise and 30 spanwise panels on the wing and 20 streamwise
panels in the wake. Constant thickness distribution in spanwise direction.

The wing is discretized into 40 chordwise and 20 spanwise panels. The trailing
wake sheet is discretized into 20 spanwise and 20 streamwise panels. In this particular
case, it took two iterations for the wake shape to converge. The geometry of the wake

sheet at each iteration is also shown in Figure 5-1. The geometries after the first and
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Figure 5-2: The geometry of the trailing wake sheet and its cross sections.
That may be because the position of the tip is set at the trailing edge of the tip

second iterations are practically identical to each other. The roll-up pattern shown
in the bottom of Figure 5-2, has a smooth appearance. However, near the tip at the

trailing edge of the wing, there is a non-smooth behavior.
chord. In reality, the position of the tip would be somewhere along the tip chord. The

present method cannot handle the side edge separation yet. The geometry of the wake
sheet is compared to that from Suciu and Morino’s method [72] at two axial positions,
which are at 4 and 9 times the wing chord downstream from the trailing edge. Suciu




and Morino’s method uses constant strength singularities and hyperboloidal panels

on the wing and in the wake.
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Figure 5-3: Wake cross section at (z —z7g) = 4 and 9 x ¢ for a rectangular wing with
1% maximum thickness/chord ratio, AR = 8, a = 10°.

The comparison is shown in Figure 5-3. Even though the size of the two roll-up

regions is different, the center of the core and the geometry of the rest of the wake

sheet shows good agreement.
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5.1.2 An Elliptic Wing

In Chapter 2, the flow adapted grid without the wake sheet roll-up, was applied to

several wings and propellers, and validated via convergence and consistency tests.
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Figure 5-4: The geometry of the trailing wake sheet roll-up behind an elliptic wing

with 15%, maximum thickness/chord ratio, o — tjgeal

6°.

To examine the effect of the vortex sheet roll-up on the flow adapted grid, an

elliptic wing is considered. The cross section of the wing has a NACA66, — 415 shape

with an a=0.8 mean camber line. The ideal angle of attack (®igea) is —2.5° and the

maximum thickness/chord ratio is 15%. The aspect ratio is 3. The resulting flow
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adapted grid on the wing and the geometry of the wake sheet roll-up are shown in

Figure 5-4.

05
VA
1 L
o.owoo(%
== |
. |
nEl Y Y
S } 09602 04 06 28 Lo
": oo
-+ z | |
T * M
i X yl/ymax }
, | B 7 S (T A B ¥
- EXPERIMENT |
' (ARDNT) | Z‘”?
‘ i -

Figure 5-5: The tip vortex trajectory of an elliptic wing with 15% maximum thick-
ness/chord ratio, & — @geqr = 12.5% the thick line is the tip vortex trajectory from
the experiment given by Arndt(1991).

The tip is moved backward along the trailing edge and the grid lines on the wing
seems to align well with those in the wake. In the close-up picture near the tip of
the wing shown in Figure 5-4, the tip vortex is shown to depart from the tip of the
wing and to roll up very smoothly. In this case, 40 spanwise, 40 chordwise and 20

streamwise panels are used on the wing and in the wake. It took two iterations for the
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converged geometry of the wake sheet roll-up and three iterations for the flow adapted
grid. Figure 5-5 shows the cross sections of the wake sheet roll-up at three different
locations. In the same figure, the numerical tip vortex trajectory is compared to that

from the experiment, which is given by Arndt [2].
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Figure 5-6: The tip vortex trajectory of an elliptic wing with 15% maximum thick-
ness/chord ratio, @ — Qigeqr = 6.0% and 12.5% the thick line is the tip vortex trajectory

from the experiment as given by Arndt(1991).

The two trajectories agree very well with each other. Arndt also showed that
in his experiment, the trajectory of the tip vortex did not depend on the angle of

attack. In the numerical calculation of Krasny [37] for the same wing the trajectory
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was found to be dependent on the angle of attack, i.e. as the angle of attack increased,

the contraction of the tip vortex increased as well.

[WAKE SHAPE FOR A BACKWARD SWEPT WING |
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Figure 5-7: The geometry of the trailing wake sheet roll-up behind the swept elliptic
wings; [7/¢lmaee = 0.2, a = 5.73°, aspect ratio AR=3. 45° backward sweep (top) 45°

forward sweep (bottom).

In the present method, as the angle of attack (loading) decreases, the position of
the tip moves backward along the wing trailing edge. Thus, the tip vortex trajectory
remains practically the same as shown in Figure 5-6. In other words, the loading does

not affect on the tip vortex trajectory as also was observed in Arndt’s experiment.
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5.1.3 Swept Elliptic Wings

To examine the effect of sweep on the geometry of the wake sheet roll-up, the present
method is applied on two swept elliptic wings. The first wing has 45° degree forward

sweet and the other wing has 45° backward sweet.

Figure 5-8: The geometry of the trailing wake sheet roll-up behind a circular wing
with 20% maximum thickness/chord ratio, o = 0.1rad.

The results for the swept elliptic wings are shown in Figure 5-7. The aspect ratio
of the wings is 3 and the angle of attack is 5.73 degrees. For both cases, the same

number of panels are used as that for the non-swept elliptic wing. Since the backward
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swept wing has usually steeper slope in circulation distribution near the tip than that
for the forward swept wing as shown in Figure 2-13, the backward swept wing has a

more advanced shape of the roll-up in the wake, as shown in Figure 5-7.
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Figure 5-9: Circulation distribution on a circular wing planform hydrofoil; [7/c|mes =
0.2, = 5.73°. Predicted by applying the BEM on the flow adapted grid with roll-up

: before and after applying the IPK condition.

From the same figure, it can be also concluded that as the wing is swept backward,
the contraction angle of the tip vortex trajectory becomes larger. This is a different

trend from that shown in Figure 2-15. It appears that when the roll-up in the wake

is included the final tip vortex contraction is smaller than that predicted when only

the effects of thickness are included.
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5.1.4 Circular Wing

As mentioned in Chapter 2, since a circular wing has a very large chord at the tip,
it is very difficult to get a converged solution and also to predict a correct shape of
the wake sheet roll-up. In particular, when an iterative Kutta condition is applied to
a thick circular wing, the circulation distribution near the tip becomes non-physical,
when the conventional or the blade orthogonal grid are used. In this section, the
present method is applied to a circular wing with 20% maximum thickness/chord
ratio. The angle of attack is 0.1 rad. The resulting shape of the rolled-up wake sheet
is shown in Figure 5-8. The position of the tip moved more backward than that in
the case of the elliptic wing. In the same figure, the gridlines on the wing and in the
wake are shown to be smoothly connected along the trailing edge of the wing. The
tip vortex also leaves the tip and rolls-up very smoothly. The circulation distribution
is shown in Figure 5-9. The difference between before and after applying the IPK
condition is much smaller that those from the conventional grid and the flow adapted
grid without roll-up as shown in Figures 2-4 and 2-14. The flow adapted grid with
roll-up has made the necessity for the iterative pressure Kutta condition less crucial

since the results before and after IPK condition are very close to each other.

5.2 Propeller

The present method is applied to propellers in the same manner as in the case of the
wings. The difference between this computation and that for the wing is that each
trailing vortex is now assumed to travel in a helical trajectory rather than a straight
line downstream. Also for the far field calculation, the sink disk is used instead of
vortex lines, which were used in the wing problem. The far field calculation starts at
z = 1.5R, which is usually used in the propeller application [16].

Consider a propeller subject to a spatially uniform flow V4(r) as shown in Figure
5-10. The flow around the propeller will be analyzed with respect to the propeller

fixed coordinate system (z,y,z). If the propeller rotates with angular velocity w,
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then the inflow U;, at the @, relative the propeller is given as

Uin(:c) = VA(T)Z —w XT

Z
Figure 5-10: Flow velocity diagram.

For all the computations described in this section, the values of the ultimate wake
radius and the tip vortex contraction angle are computed by the method, rather than
being given from experimental information.

Following the numerical procedure described earlier, the flow adapted grid with
the wake sheet roll-up, is applied to three different kinds of DTMB propellers. The

results are compared to the experimental data.
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5.2.1 Propeller 4990

The first case is propeller 4990, which is a typical modern marine propeller with a

large hub and nonlinear skew distribution.
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Figure 5-11: Trailing wake sheet of a propeller 4990.

In this calculation, only one blade is considered and no hub is included. The
propeller 4990 has a high skew distribution and a big chord length at the tip. The
calculation is performed at the design advance coefficient (J4 = 1.270). The number
of panel on the blade is 40 and 20 in chordwise and spanwise directions, respectively.
In the wake, 30 streamwise number of panels are used. The resulting shape of the
wake sheet roll-up is shown in Figure 5-11. The trailing wake sheet leaves the trailing

edge of the blade and smoothly rolls up downstream. In addition, the cross sections
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of the wake sheet are shown in Figure 5-12.
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Figure 5-12: Cross section of the wake sheet of a propeller 4990.

In this figure, it is shown that the core region advances faster than the rest of

the wake sheet. It seems that the axial flow in the core becomes accelerated. This is

explained in Appendix B.1.1.

5.2.2 Propeller 4119

The propeller 4119 is a typical three bladed propeller. The blade has a big chord
length at the tip and no skew distribution. The blade section has an NACA 66
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modified thickness form superimposed on an a=0.8 mean camber line.

Figure 5-13: The shape of the wake sheet of a propeller 4119.

The calculation is performed at design advance coefficient equal to 0.833. The
hub is not included in this calculation. Figure 5-13 shows a general shape of wake
sheet roll-up and also the cross sections. This case also shows good convergence and
geometry of the wake sheet roll-up. In the cross section, unlike the propeller 4990, the
core region is decelerated. This is also explained in Appendix B.1.1. For this propeller,
experimental results are available in [27]. Figure 5-14 shows the trajectory of the tip

vortex along the z-direction for the propeller 4990. The tip vortex trajectory from
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the present method gives an identical trajectory to that measured in the experiment.

In addition, the pitch of the tip vortex is predicted very well, as shown in Figure 5-15.
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Figure 5-14: Radial location of the tip vortex for a propeller 4119.

To compare the circulation deformations behind the propeller blades, two axial
locations are chosen, which are at z/R = 0.328 and 0.951. Figure 5-16 shows these
two locations and the circulations from the present method and the experiment. The
present method gives multivalues of circulation distribution near the tip. That is
because the circulation is calculated along the roll-up sheet. In the rolled-up region,
the radial position of the sheet goes up and down as many times as the number
of turns of the roll-up. On the other hand, for the experiment, the circulation is
calculated from the distribution of mean tangential velocity along the cut in the

wake. This method is described by Kerwin [32] and later Wang [73] and provides
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a simple comparison between the measured and the calculated circulation. From

Kerwin [32],

where V is a incoming flow and K is the number of blades and V; is the measured

mean tangential velocity.
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Figure 5-15: Angular position of the tip vortex for a propeller 4119.

The circulations from the experiment and the calculation at two axial locations

agree well with each other.

115




5.2.3 Propeller 4660

Finally, in order to examine the hub effect on the wake sheet roll-up, a propeller 4660

is calculated. The propeller 4660 has five blades and high skew distribution.
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Figure 5-16: Circulation deformation in the trailing wake for a propeller 4119; At
x/R = 0.328 and 0.951 .

The geometry of this propeller is given in Table 5.1. The calculation is performed
at J=0.976, which is smaller than the design advance coefficient. In the computation,

the hub is modeled with a fairwater downstream and constant radius upstream as
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shown in Figure 5-17. In addition, the ultimate hub vortex radius is assumed as
0.1R. Figure 5-17 shows the predicted general shape of the wake sheet roll-up. The
flow leaves the tip of the blade and starts to roll up smoothly. Near the hub, the flow

follows the hub surface and leaves at the ultimate hub radius.

Number of Blades : 5

Hub/Diameter Ratio : 0.3

Section Meanline : NACA a=0.8
Section Thickness Form : NACA66 (Modified)

Design Advanced Coefficient : 1.038

[/ /D [2a/D | fdeared) [ ID | 7/c [ 4D ]

0.30 || 1.165 | 0.0091 2.985 | 0.178 | 0.0000 | 0.0420
0.35 || 1.296 | 0.0103 3.481 | 0.210 | 0.0050 | 0.0372
0.45 || 1.480 | 0.0103 4.810 | 0.271 | 0.0209 | 0.0290
0.55 || 1.566 | 0.0103 6.631 | 0.327 | 0.0267 | 0.0226
0.65 || 1.566 | 0.0103 8.978 | 0.374 | 0.0256 | 0.0178

0.75 || 1.498 | 0.0103 11.895 | 0.406 | 0.0209 | 0.0146
0.85 || 1.381 | 0.0103 15.410 | 0.409 | 0.0151 | 0.0122
0.90 || 1.306 | 0.0102 17.403 | 0.387 | 0.0122 | 0.0110
0.95 | 1.222 | 0.0103 19.557 | 0.326 | 0.0094 | 0.0091
1.00 |} 1.128 | 0.0102 21.876 | 0.000 | 0.0000 | 0.0000

Table 5.1: The geometry of the propeller 4660.

From the figure, it is clearly shown behind the propeller blades that as the wake
goes downstream, the tip vortex position is contracted. For this propeller experimen-
tal results are available in [73]. To examine the change of the circulation behind the
propeller blades, three axial locations are chosen, which are at /R = 0.281, 0.853 and
1.253. Figure 5-18 shows these three locations and the circulations from the present
method and the experiment. The agreement between the computed and the mea-
sured circulation distributions behind the propeller blades is remarkable. From these
applications, it could be concluded that the present method predicts the geometry
of the wake sheet, especially the tip vortex trajectory, very smoothly and accurately.

In addition, the computed circulations behind the propeller blades match well with
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those from the experiment.
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Figure 5-17: The shape of the wake sheet on propeller 4660.
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Figure 5-18: Circulation deformation in the trailing wake for a propeller 4660; At
x/R = 0.281, 0.853 and 1.253 .
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Chapter 6

Conclusions and

Recommendations

In this chapter, the accomplished improvements of the propeller steady flow panel
method will be summarized and then future research topics related to the present

method will be suggested.

6.1 Conclusions

In this thesis, a new grid arrangement, called by “FLow Adapted Grid”, has been
developed. The flow adapted grid has been implemented in a panel method and
applied to a highly skewed propeller and a propeller with a large chord at the tip,
which have had problems in satisfying the iterative pressure Kutta condition. The
results from applying the flow adapted grid are convergent and also consistent to the
results from the lifting surface method [16]. In particular, the 3% discrepancy in
circulations between the panel method and the lifting surface method for propeller
4118 with zero thickness, which was found by Hsin [24], is decreased to less than
1%. In the case of wide tip blades with no skew the flow adapted grid was found to
improve the predicted pressures at the tip substantially and at same time to affect
the circulation distribution appreciably. For wide tip blades with high skew, the
proposed grid improved the predicted pressures at the tip, even though it did not
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affect the predicted circulation distribution. In order to validate the flow adapted
grid, the force coefficients from using the flow adapted grid are compared to those
from existing experimental data. The resulting forces and tip vortex trajectories
from using FLAG are found to be closer to the experimental values than those from
using the conventional grid. In the flow adapted grid the position of the tip, “the
computational tip”, is determined by searching among the streamlines for the one
which starts at the largest blade radial location and does not intersect the propeller
blade. The location of a computational tip depends on the loading (angle of attack).

A robust and efficient three-dimensional numerical method has been developed
for accurately predicting the geometry of the wake sheet roll-up behind wings and
propellers. A hyperboloidal panel is used in order to improve the accuracy in the
highly roll-up region, where the curvature increases. By employing the hyperboloidal
panel, the gap between the panels disappears and the surface of the trailing wake
sheet can be modeled more accurately. In addition, in order to avoid discontinuities
in the dipole strength in the wake, bi-quadratic strength dipoles are used. The panel
method can predict the shape of the wake sheet smoothly. For the more advanced
shape of the wake, a rediscretization scheme is applied at each iteration. In the first
iteration, the vortex sheet moves from row to row in a stripwise sense. From the
second and higher iteration, the vortex sheet moves altogether. The results of the
high-order panel method are convergent and predict a smooth and reliable geometry
of the wake sheet roll-up. The results of the method are also validated to those from
other numerical methods.

Finally, the effect of the three-dimensional vortex sheet roll-up is included in
the flow adapted grid. This method uses an iterative scheme to satisfy the boundary
condition in the wake, where the pressure jump is forced to be equal to zero. For each
iteration, the geometry of the wake sheet roll-up is obtained with a given circulation
distribution, which is then updated by the panel method applied on the blade with the
rolled-up wake sheet. The results of this scheme show good convergence with number
of panels. In addition it has been found that when the FLAG and the completely

rolled-up wake geometry are combined the results before and after IPK condition
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become very close to each other. The method is applied to many wing and propeller

geometries and the results are shown to agree with the existing experimental data.
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Figure 6-1: Incorrect location of the tip.

6.2 Recommendations for Future Research

The following improvements on both the physical modeling and the numerical scheme

of the present method can be made.
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e When a tip is assumed to be at the highest radial position, the wake sheet will
not be contracted but instead, it will diverge as shown in Figure 6-1. From this
examination, the position of the tip vortex detachment point, “the computa-

tional tip”, may be determined numerically as shown in Figure 6-2.

ASSUMED TIP

Figure 6-2: The tip vortex detachment point.

Assuming a position of the tip, the total velocity (Viua) is computed at a
control point of the panel in the wake, which is just next to the assumed tip.
If the radial component of the total velocity points outwards then move the tip

downstream along the trailing edge of the blade until the rolled-up wake at the
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Initial paneling for the leading edge separation for an elliptic wing.

tip leaves the blade smoothly. This scheme will work well but the panel method
will have to be solved for each assumed tip. This will increase the CPU-times
can be computed. With this circulation, the geometry of the trailing wake sheet

the leading edge of the propeller blade. The initial panel arrangement is shown
in Figure 6-2. Applying IPK condition at the trailing edge and the part of
leading edge downstream of the detachment point, the circulation distribution

appreciably.
e The leading edge separation may be included by moving the tip forward along

Figure 6-3:




and the wake sheet separated from the leading edge may be computed.
Other improvements which are recommended for further research are :

e The modeling of a viscous core and the calculation of the boundary layer thick-

ness at the tip.
e The prediction of the leading edge separation start point.

e The modeling of tip vortex cavitation.
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Appendix A

A Numerical Kutta Condition

The circulation around the body, which is equal to the potential jump in the wake, is
determined by applying the Kutta condition at the trailing edge. The Kutta condition
requires that the velocity at the trailing edge be finite. In the numerical calculation,
the first approximate Kutta condition, which is called Morino’s condition [59], requires
that the strength of the dipole in the wake be equal to the difference in the value of the
dipole strengths of the two panels at the trailing edge. However, this condition does
not include the free stream (cross flow), which is in the direction of a line connecting
the control points of the two panels at the trailing edge. An iterative pressure Kutta
condition (IPK condition) is thus introduced with the free stream correction [42], [24].
The strength of the dipole in the wake is adjusted until the pressure on the upper
and lower panels become equal at the the trailing edge. However, some problems
were found when this condition was applied to analyze a high skewed propeller or a
propeller with a large tip chord [24]. In this appendix, these problems will be discussed
and improvements to the numerical Kutta condition will be presented. These issues
were first addressed by Kinnas et al. [36] but will be repeated in this Appendix for
the sake olf completeness.

The upper and lower panels at the trailing edge are considered. The total velocity
vectors on both sides of the trailing edge are given as V™ and V'~ at the suction
and pressure sides of the trailing edge, respectively, as shown in Figure A-1. The

direction of the vorticity vector + in the wake is also shown in the same figure. The
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two velocity vectors have equal magnitudes as a result of the IPK condition’:

v =[v] (A1)

On the other hand, the direction of the mean velocity vector, V., = [VT+V 7] /2,

is very different from that of the wake vorticity vector ~.
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Figure A-1: Velocity vectors on the suction and pressure sides at the trailing edge of
a circular planform wing; [7/¢|mez = 0.2, @ = 0.1rad. After an IPK condition.

This will result in a pressure jump in the wake given by:

Apw = p |V X 7| (A.2)

IThe IPK condition was found to affect the magnitude of the trailing edge velocities more than
their directions
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where p is the flow density.

In other words, even though the IPK condition has ensured the equality of pres-
sures at the trailing edge on the blade, it has no way to force the zero pressure jump
condition in the wake. Instead, we have to align the vorticity vector, i.e. wake geom-
etry, with the mean velocity vector at the trailing edge. It would also seem natural
for the grid on the blade to be aligned with the mean velocity vector at the trailing

edge. This can be explained as follows.

Figure A-2: Schematic of the paneling on a 3-D hydrofoil and its wake in the vicinity
of the trailing edge.
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The total potentials 1 and ®~ at the suction and pressure sides at the trailing

edge , respectively, may be expressed as follows:

q)+ = @1+K+AS
& = ®y+VAs (A.3)

where ®; and ®» are the total potentials at the control points of the trailing edge
panels at the suction and pressure sides, respectively; As is the distance of the control
points from the trailing edge measured along the “chordwise” grid direction on the
planform,s, as shown in Figure A-2; V¥ and V. are the projections of the total
trailing edge velocities V™ and V'™, respectively, along s.

The Morino Kutta condition [59] at the trailing edge is:
AD =3+ — &~ (A.4)
On the other hand, the numerical implementation of equation (A.4) requires:
AdDy =) — Dy (A.5)

Thus, the discretization error, E, in implementing the Morino condition (i.e. before
the IPK condition), may be expressed, by making use of equations (A.3), (A.4) and
(A.5), as follows:

E=A®—A®y = As [V} - V] (A.6)

S

According to equation (A.6), in order to minimize the difference between the circu-

lations before and after applying the IPK condition, we should have:
Vi =V7 (A7)

In light of equation (A.1), equation (A.7) is equivalent to requiring that the mean
velocity vector V,, is aligned with the grid direction s on the planform. This explains

the larger difference between the circulation distributions before and after the IPK
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condition, in the case of the blade orthogonal grid than in the case of the conventional
grid, stated earlier. In the case of the blade orthogonal grid the angle between V,

and the s direction is larger than in the case of the conventional grid.
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Appendix B

Modeling of The Roll-Up Region

This appendix is a brief summary of Lee [43] and Cummings [8] work, which explains
the rationale behind modeling the roll-up region as a core, a subcore and a sheath.
The nature of each region will be examined and the pressure calculation in the core

will be expressed.

B.1 Definition

The clue toward a description of the roll-up region is provided by experiments [10]. In

this section, these three regions, referred to as the core, the subcore and the sheath,

are defined as follows :

e Core ; small changes in the tangential velocity.
e Subcore ; large changes in the tangential velocity close to the vortex axis.

e Sheath ; moderate changes in the tangential velocity surrounding the core.

These three regions are the outcome of the vortex sheet roll-up. The following

summarizes each region :
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B.1.1 The Core

As shown in Figure B-1, an orthogonal curvilinear coordinate system can be estab-

lished in which the core axis s coincides with one of principal axes of this curvilinear

system. The other coordinates (r, 8) are defined in a plane normal to the local tangent

vector to s.

Figure B-1: The coordinate system (s, r,8) along the core axis(s)

Then, the non-dimensionalized Navier-Stokes equation for steady incompressive

laminar flow in this coordinate system are ;

v, v Ou,  vp Oy dp

e T v e v %as T o

119 lﬁ( ) +_1_32vr
Relor \rar\0) ) T 2 T
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The core is defined as the region with a relatively flat tangential velocity profile.
From this definition, gradients in the tangential velocity are small. Also a Reynolds
number can be assumed to be large. Therefore, at equation (B.2), the nondimen-
sional laminar viscous term }_2128% (%56;(7'1}9)) becomes much smaller that the convec-
tive terms. In addition, measurements from Schmucker and Gersten [70] indicate
that in the core region the mean square quantities of the turbulent fluctuations are
estimated as about 3%. It can be concluded that both laminar and turbulent shear
stresses are small in the core, so that the core can be regarded as inviscid.

Inside the core, the axial velocity is usually accelerated [38], [44]. A simple expla-
nation of this is follows. In Figure B-2, at two axial stations, A and B, the pressures
on the same streamline, have the same value if the flow field in the core is assumed

conical.

PQA:PQB

.where the first subscript refers to the position on the same streamline, and the second

indicates the axial station. The radial momentum equation is

op
— 5 = p('l) . V'U),-
10p v, 10v, v} v,
por UT<8T>+UTT 80 T+Uz<3z> (B-4)
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Assuming a slender vortex core, the radial momentum equation (B.4) reduces to

op vj
X _,2% >0
ar _F
Thus
Poy > Pia

is obtained. This implies that there exists a favorable axial pressure gradient, which

accelerates the flow in the core.

Figure B-2: Axial flow in the Core

This happens only if the conical approximation and the slender core assumption
are valid. For the propeller 4990, the flow near the tip can be assumed as a conical
flow because the propeller blade has high skew distribution and large tip chord. In
addition the trailing wake sheet is not much rolled-up as shown in Min’s experiment

[54], in which the contraction is decreased as the skew becomes larger. That may be
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a reason why the flow in the core region is accelerating in the numerical results as
shown in Figure 5-11. On the other hand, propeller 4119 does not have skew. The
flow near the tip is similar to that around the circular wing. In this case, the conical
flow approximation is not valid anymore. Also since the trailing wake sheet has a
bigger core size than that for the propeller 4990, the slender core assumption may
not be valid. That may be one reason that in this case the flow is decelerated in the

core, as shown in Figure 5-12.

B.1.2 The Subcore

The subcore is a small region, which is deep inside the core and close to the vortex
axis. In this region, the tangential velocity changes rapidly. Inside the subcore,
viscous effects can be no longer neglected because laminar viscous terms become

large as r decreases. In this thesis, this region is ignored.

BOUNDARY LAYER THICKNESS

Figure B-3: Schematic diagram showing a roll-up shear layer and the cut-off location
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B.1.3 The Sheath

This is the region shielding the core from the external flow. Unlike the core the
sheath is a region in which both gradients in tangential velocity and viscous effects
are substantial. The sheath itself is just a remnant of the wake sheet in the roll-up
process. However, physically, this is the only medium from which irrotational flow,
entering the rotational but inviscid core, can receive vorticity, thereby preserving
Kelvin’s theorem. In other words, if the sheath does not exist, the solutions inside

the core and outside the core, cannot be matched.

B.2 The Size of the Core

This section will explain how the size of a core is determined. The center of the core
coincides with the position of the trajectory of the tip vortex, which is determined by
finding the centroid of the points near the core in the numerical calculation. The core
boundary in a plane normal to the tip vortex trajectory is approximated as a circle.
When the boundary layer thickness is added to the wake sheet at the tip, there will
be a junction location at which neighboring arcs begin to touch ,Cj in the Figure B-3.
The core radius is defined as the distance between the core center and the junction
point. Since the viscous calculation around the vortex core is beyond the limit of the

present thesis, this will not be implemented in this thesis.

B.3 The Pressure in the Subcore

The accurate calculation of the pressure coefficient in the core is essential in the
prediction of the tip vortex cavitation inception because the minimum pressure is
inside the core. In this section, the calculation of the pressure inside the core will be

explained.

Assume the motion is axisymmetric. The equation of motion follows.




2
R
u%% + U%z;—) + v% = v [VQw — %] (B.5)
Assume axial gradients are small compared to radial gradients. Thus,
o .9
oz or
U << v
Then equations (B.5) become,
2
2
ca %gﬁl (B.7)
u%% + v%rﬁ ol = [ng — %] (B.8)

The integral form of equation (B.7) is ;
x wQ
P=Doo— P / —dr
T T
In the region far downstream, Bachelor finds a solution for this equation of form;

W = — 1-——l 4vz

— UQr2
27T [ }

If the subcore radius is defined as the radius where the tangential velocity w is max-

imum, then the subcore radius a has a following form.

4yzx
2=1.258  —
a UO

The change of subcore radius with the distance downstream is ;

da a

%—253
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From the above results, it can be concluded that the subcore radius does not
change fast enough for viscosity to have any significient effect on results in the region
close to the propeller blade. Therefore, the subcore can be modeled by a Rankine
vortex with a group of trailing vorticies outside it, at each downstream section. The
pressure in the subcore can be calculated assuming axial symmetry and a constant

radius subcore.

Forr <a
p(T) = PP —dr
o pI?2 e pl'? oo dr
B 4772;2 /’r rdr - 47r§ /a r3  Peo
ol ol

_ 2 .2
= P 8m2at (a7 =77) = 8m2a?

Therefore, the pressure coefficient C,, is ;

P — Peo Le 2
ot = [at] :
P SpUZ 21U r=To
Fo 2 T
= 2 () =2 <
|:27TT'0VOO] |:(7"0> ] r=To
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Appendix C

The Calculation of The Induced
Velocity

In the calculation of the three-dimensional trailing wake sheet roll-up, a new higher
order panel method is applied. This method is developed in order to handle the
arbitrary strength of singularities over a curved surface. A special algorithms has been
developed for the calculation of induced potential by Maniar [45]. In this appendix,
the induced velocity due to a distribution of normal dipoles on a curved panel is
evaluated for the case where the density of the singularities is of arbitrary polynomial
form. The same algorithm as Maniar [45] will be applied for the calculation.

As shown in Figure C-1, an orthogonal coordinate system (z,y,z) is taken as a
global coordinate system. Then a panel is transformed to local coordinate system
(&,m,¢) with ¢ = 0. Let S be the curved panel surface and ¥ be its transformed panel
surface. @ is a point on S and P is a field point. Then the induced velocity at P due

to a distribution of dipoles of order M on S is given as

1 M M
VeP) = 3.3

22 [V (7)o
J Lev

v 2

8
1MM
= — ax
SIS [ Loy (M)
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1MM

= EZZV@J (C.1)

i=0 j=0

where n is a normal vector at the centroid of the panel and R is a position vector
from a collocation point on the curved surface of order N to a field point, which is

expressed by
N N
R=3} 3 Tmal™"

m=0n=0

PANEL GEOMETRY

Figure C-1: The panel geometries in the global coordinate system and the transformed
coordinate system.

Consider the evaluation of gradient of a weighted dipole integral in (C.1),
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Vo, = [ [, finjV~("j1;f""j>dE (C2)

i’j

The equation (C.2) can be rewritten in the (&,7,() plane as,

Vi, = //fnfv ("RR) dx
= [ [en ["R *?("'R)Ldz

_ /:/ [:cha:n)_?)R.(R.;;gxm,,))Lj dedn (C.3)

This integral will be implemented in three categories, which are near field, far
field and self induced coefficients. Each region is decided by the ratio between the
maximum diagonal distance of the panel and the distance between the field point
and the collocation point of the panel. The followings summarize the numerical

formulation for each region;

o Far Field

This is the case when the field point is far away from the panel. The ratio of
the distance between the field point and the collocation point to the maximum
diagonal distance is greater than 5. Usually all panels except themselves and
neighboring panels are in this category. The integrals in equation (C.3) do
not have a closed form solution. Therefore, the integrals have to be solved

numerically. Gaussian Quadrature is used in this section.

The discrete formulations are follows;
Vo = / / gind [ Te X wn) n) 3R' (R (z¢ x ‘Bn)(é’,n’))}

R3
» (52 ; §1> (772 ; 771) de'dn’

S anan [“"5 EANPLACHCL wn»}

I

7‘745 =1 717)—1

141




«(252) (252) (4

— —
, Where f — 62 2 5151 + 51 2 §2
MM, Th T2
n o= 9 n+ 9
R = z,—
k is the order of quadrature.
Qng, O,y are coefficients of the quadrature.

In equation (C.4), the directed surface element z, x @, can be computed by

follows.
Ny Ny
Let Te X T, = E Z Winn€E™N" , Ny <2N -1
m=0n=0
N N
r = Z ngm 7Qm = Z wm’n,r]ﬂ
m=0 n=0
N ] N-1
§B§ = Z mgm—lQm = Z (m -+ 1)§QO+1
m=0 m=0
N
mﬂ = Z fm(Qv>m
m=0
2N—1 min(m,N—1)
ﬂl’g X :1377 = Z §m ’ Z (:u‘ + I)Q;H—l X (Qv)m—li
m=0

Qi1 X (@p)m—p =

p=maz(0,m—N)
N N
n n—1
Z Lyt+1,n7] X Z Lm—pn ]

n=0 n=0
N-1

N
Z wu-&-l,nnn X Z mm—u,n+1(n + 1)7771

n=0 n=0
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2N-1 min(n,N)

= Z 77" : Z Tptinu X Tm—pn—v+1 (TL — V-t 1)
n=0 v=maz(0,n—N+1)

Therefore,

2N—-12N-1

Tex @y = > ), Waal™"

m=0 n=0

m n
Wmn = Z(/J +1)- Z(n —v+1)(Tpq1p X mm—ﬂ,n—t’—i-l)
u=0

v=0
Women = »_(M—n—v+1)x
v=0
n
Z(N + )(Zps1p X Tnepm-n—v+1) (C.5)
©=0

From equations (C.4) and (C.5), the induced velocity can be computed.

e Near Field

In near field, the induced velocity is evaluated by an adaptive subdivision
scheme, which will be explained below. When the field point is in the near
field region, the panel is subdivided until the ratio between the distance from
the field point to the collocation point and the maximum diagonal distance of
the subdivided panel is out of the near field region. Then, we can use the same
scheme for that for the far field. Let the number of subdivided panels along the
¢ and n-direction be N, N, respectively. Then

Tin,m+1

Ne Ny ént1m . . R
Vo, = L5 [ [T epv (@ x ) didn (C6)

n=1m=1"YMnm n,m

When the panel is subdivided, N; and NV, are determined from the panel aspect
ratio. The Equation (C.6) can be computed by using the Gaussian quadrature

as explained in case for the far field calculation.

e Self Induced Coeflicient

This is the case when the field point is on the surface over which integration is
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carried out. For the induced potential, the singularities are analytically removed
and the desingularized integrands are expanded in a series with algebraic type

terms which are integrable [45].

Figure C-2: An example for calculating self induced velocity.

In the case of self induced velocity, to this moment, there has been found no way
to remove the singularities analytically. Instead, we divide a panel into smaller
panels with the center panel having the same collocation point as the original
panel. Then, find the self induced velocity by assuming that the strength of the
dipole is constant on the central panel and its geometry flat. In the other panels
the induced velocities are computed by using the same scheme as that for the
near and the far field. In order to find an adequate number of subdivisions, an

example is considered for a non-planar panel with bi-linear dipole distribution
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as shown in Figure C-2. As shown in Table C.1, the self induced velocity has

converged in 3 subdivisions. In the calculation of the wake sheet roll-up, three

subdivision is used for the shorter side and for the longer side, the number of

subdivisions is determined by the aspect ratio of a panel.

” Number of Subdivisions H u I % [ w ”
1 0.841592 | 0.841592 | -1.683183
3 0.819042 | 0.810093 | -1.642820
5 0.819042 | 0.810093 | -1.642820

Table C.1: Convergence of the self induced velocity.
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